
Proceedings of the
First Workshop on Ontology Repositories

and Editors for the Semantic Web
(ORES2010)

7th Extended Semantic Web Conference
Hersonissos, Crete, Greece, May/June

2010

edited by Mathieu d’Aquin, Alexander García Castro,
Christoph Lange, and Kim Viljanen

May 31, 2010

Preface

The number of ontologies being built and made available for reuse has increased steadily
in the last few years. Semantic Web search engines such as Swoogle and Watson currently
index several tens of thousands of them. While being a foundation for the Semantic Web,
this new environment where ontologies are shared and interlinked online also poses new
challenges; fostering thus a number of research projects aiming to understand, amongst
others, ontology reuse, storage, publication, retrieval and modularization. Within the
context of the Semantic Web ontology repositories should facilitate the sharing and dis-
covery of reusable ontological components (entire ontologies or portions of them).
Illustrating the importance of the problem, significant initiatives are now emerging.

One example is the Open Ontology Repositories (OOR) working group set up by the
Ontolog community. Another example is the Ontology Metadata Vocabulary (OMV)
Consortium, addressing metadata for describing ontologies. Despite these initial efforts,
ontology repositories are hardly interoperable. Although sharing similar aims (providing
easy access to Semantic Web resources), they diverge in the methods and techniques
employed for gathering these documents and making them available; each interprets
and uses metadata in a different manner. Furthermore, many features are still poorly
supported, such as modularization and versioning, as well as the relationship between
ontology repositories and ontology engineering environments (editors) to support the
entire ontology lifecycle.
The growing number of online ontologies makes the availability of ontology repositories,

in which ontology practitioners can easily find, select and retrieve reusable components,
a crucial issue. The recent emergence of several ontology repository systems is a further
sign of this. In order for these systems to be successful, it is now critical to achieve interop-
erability between ontology repositories, through common interfaces, standard metadata
formats, etc.
To address these needs and to provide a forum for researchers and developers to discuss

features and exhange ideas, the Ontology Repositories and Editors for the Semantic Web
(ORES 2010) workshop was held on Crete on May 31st, 2010, with results documented in
this proceedings publication. We thank all participants of the workshop, whose excellent
presentations and input inspired insightful discussions. We also thank the program com-
mittee for their valuable work in reviewing the articles. Finally, we thank the organizers
of the Extended Semantic Web Conference (ESWC 2010) for the practical arrangements.

Mathieu d’Aquin, The Open University
Alexander García Castro, Bremen University
Christoph Lange, Jacobs University Bremen
Kim Viljanen, Aalto University

iii

Contents

Preface iii

Programme vi

SOBOLEO – A Repository for Living Ontologies
Simone Braun and Valentin Zacharias 1

Collaborative Metadata Editor Integrated with Ontology Services and Faceted
Portals
Jussi Kurki and Eero Hyvönen 6

Linked Open Ontology Services
Kim Viljanen, Jouni Tuominen, Mikko Salonoja and Eero Hyvönen 11

A User Interface for Ontology Repositories
Jouni Tuominen, Mikko Salonoja, Kim Viljanen and Eero Hyvönen 16

OWLGrEd: a UML Style Graphical Editor for OWL
Jānis Bārzdiņš, Guntis Bārzdiņš, Kārlis Čerāns, Renārs Liepiņš and Artūrs
Sproģis 21

ORE-MP: Ontology Reasoning Engine for Molecular Pathways
Renato Umeton, Beracah Yankama, Giuseppe Nicosia and C. Forbes, Jr.
Dewey 26

CONSISTOLOGY: A SEMANTIC TOOL TO SUPPORT ONTOLOGY EVOLU-
TION AND CONSISTENCY
Najla Sassi, Wassim Jaziri and Faiez Gargouri 31

Previewing OWL Changes and Refactorings Using a Flexible XML Database
Christoph Lange and Vyacheslav Zholudev 43

On the Use of Transformation and Linked Data Principles in a Generic Repository
for Semantic Web Services
Barry Norton and Mick Kerrigan 55

iv

iServe: a Linked Services Publishing Platform
Carlos Pedrinaci, Dong Liu, Maria Maleshkova, David Lambert, Jacek Kopecky
and John Domingue 67

Context-aware access to ontologies on the Web
Patrick Maué, Alejandro Llaves and Thore Fechner 79

Ontology Recommendation for the Data Publishers
Antoine Zimmermann 91

Semantic Interoperability Framework for Estonian Public Sector’s E-Services In-
tegration
Kalle Tomingas and Martin Luts 96

Ontology Repositories with Only One Large Shared Cooperatively-built and Eval-
uated Ontology
Philippe Martin 101

Using extended metadata model OMV and metrics in OntoLP Portal
Anderson Bestteti, Larissa Freitas and Renata Vieira 113

Ontology Repository for User Interaction
Martins Zviedris 125

Evaluation Framework for Ontology Development and Management Methodolo-
gies
Dionisis Kehagias, Dionysia Kontotasiou and Dimitrios Tzovaras 130

A pan-European repository: SEMIC.EU as the point of reference for eGovernment
ontologies
Klaus Reichling, Martin Luts and Renke Fahl-Spiewack 142

v

Programme

09:00–10:30 Session 1
09:00–09:10 Opening Ceremony

Mathieu d’Aquin, Alexander García Castro, Christoph Lange,
Kim Viljanen

09:15–10:00 Keynote
Nigam Shah, Stanford Center for Biomedical Information Re-
search

10:00–10:30 Demo Presentations
SOBOLEO – A Repository for Living Ontologies
Simone Braun and Valentin Zacharias
Collaborative Metadata Editor Integrated with Ontology Ser-
vices and Faceted Portals
Jussi Kurki and Eero Hyvönen
Linked Open Ontology Services
Kim Viljanen, Jouni Tuominen, Mikko Salonoja and Eero
Hyvönen
A User Interface for Ontology Repositories
Jouni Tuominen, Mikko Salonoja, Kim Viljanen and Eero
Hyvönen
OWLGrEd: a UML Style Graphical Editor for OWL
Jānis Bārzdiņš, Guntis Bārzdiņš, Kārlis Čerāns, Renārs
Liepiņš and Artūrs Sproģis
ORE-MP: Ontology Reasoning Engine for Molecular Pathways
Renato Umeton, Beracah Yankama, Giuseppe Nicosia and C.
Forbes, Jr. Dewey
CONSISTOLOGY: A SEMANTIC TOOL TO SUPPORT ON-
TOLOGY EVOLUTION AND CONSISTENCY
Najla Sassi, Wassim Jaziri and Faiez Gargouri

10:30–11:00 Coffee Break (poster/demo session open to visitors)

vi

11:00–13:00 Session 2
11:00–11:15 Poster/demo session continues
11:15–13:00 Regular talks (full talks: 15 minutes + 5 minutes dis-

cussion; short talks: 10 minutes + 5 minutes discussion)
11:15–11:35: Previewing OWL Changes and Refactorings Using
a Flexible XML Database
Christoph Lange and Vyacheslav Zholudev
11:35–11:55: On the Use of Transformation and Linked Data
Principles in a Generic Repository for Semantic Web Services
Barry Norton and Mick Kerrigan
11:55–12:15: iServe: a Linked Services Publishing Platform
Carlos Pedrinaci, Dong Liu, Maria Maleshkova, David Lam-
bert, Jacek Kopecky and John Domingue
12:15–12:30: Context-aware access to ontologies on the Web
Patrick Maué, Alejandro Llaves and Thore Fechner
12:30–12:45: Ontology Recommendation for the Data Publish-
ers
Antoine Zimmermann
12:45–13:00: Semantic Interoperability Framework for Estonian
Public Sector’s E-Services Integration
Kalle Tomingas and Martin Luts

13:00–14:30 Lunch

vii

14:30–16:00 Session 3
14:30–14:55 Best paper

14:30–14:55: Ontology Repositories with Only One Large
Shared Cooperatively-built and Evaluated Ontology
Philippe Martin

14:55-16:00 Regular talks (full talks: 15 minutes + 5 minutes dis-
cussion; short talks: 10 minutes + 5 minutes discussion)
14:55–15:15: Using extended metadata model OMV and metrics
in OntoLP Portal
Anderson Bestteti, Larissa Freitas and Renata Vieira
15:15–15:30: Ontology Repository for User Interaction
Martins Zviedris
15:30–15:45: Evaluation Framework for Ontology Development
and Management Methodologies
Dionisis Kehagias, Dionysia Kontotasiou and Dimitrios Tzo-
varas
15:45–16:00: A pan-European repository: SEMIC.EU as the
point of reference for eGovernment ontologies
Klaus Reichling, Martin Luts and Renke Fahl-Spiewack

16:00–16:30 Coffee Break

16:30–18:00 Session 4
16:30–17:15 Keynote

Ken Baclawski, Northeastern University, Boston / OOR Initia-
tive

17:15–17:50 Open panel discussion about OOR (Open Ontology Repository)
with “lightning” inputs from the participants

17:50–18:00 Concluding Remarks

20:45– ORES Social Event

viii

SOBOLEO – Editor and Repository for Living
Ontologies

Simone Braun and Valentin Zacharias,

 Forschungszentrum Informatik, FZI
Haid-und-Neu Strasse 10-14
76131 Karlsruhe, Germany
{braun,zach}@fzi.de

Abstract. SOBOLEO is a web based system that enables groups of people to
collaboratively develop and use SKOS ontologies and semantically organized
information spaces. SOBOLEO supports the development and refinement of
living ontologies – i.e. ontologies that are never finished and that are used and
developed at the same time. It offers tools to edit the SKOS ontology used and
the information space. It also offers interfaces for remote applications to be
notified of changes and to change the ontology itself.

Keywords: Ontology engineering, SKOS, social software, collaboration,
semantic annotation, Ontology Maturing, SOBOLEO

1 Introduction

SOBOLEO1 is a system that enables groups of people to jointly structure information
(documents and experts) in a domain. SOBOLEO’s goal is to serve as a repository for
‘living ontologies’ according to the principles of Ontology Maturing [1]. This theory
understands ontology development as a continuous and collaborative process
embedded and interwoven with actual usages processes; e.g. the users can directly
change the ontology when finding it deficient during use of the semantic search. All
modeling can be done while the application is used (i.e. no large up-front investment
in ontology engineering) and even partial formalizations are used immediately to
improve user experience [2].

In this paper, we start with a short overview of use cases for SOBOLEO before
introducing design principles and core concepts. In the next section we give an
overview of the main functions of SOBOLEO by looking at ontology editing,
document and person annotation, semantic search, and browsing. Finally we conclude
with a discussion of related systems.

1 An installation of the SOBOLEO system is publicly available at http://tool.soboleo.com.

Users can try out the system in one collaboration space that is open to edits from
anyone. SOBOLEO is completely web based – no installation or registration is required.

1

2 Simone Braun and Valentin Zacharias,

2 Use Cases

Example use cases for SOBOLEO are:
 An HR department organizing data about available experts. Here SOBOLEO

supports an HR department in maintaining a competency ontology and using this
ontology to keep track of - and search within - the database of experts. Note that
the competency ontology is never really finished – as new possible skills are
emerging all the time.

 A learning course that is jointly developing an understanding of a domain,
creating an ontology and interlinking it with relevant documents. SOBOLEO
supports this use case through the management of both the ontology and the
relevant documents. Note that here the ontology is also evolving throughout its
use – always reflecting the current knowledge of the course participants.

 A group of expert jointly collecting the state of the art in a scientific domain
(with links to both documents and experts). Here, too, the ontology will
constantly evolve to reflect both the knowledge of the experts as well as the
current scientific consensus.

3 Architecture & Implementation

SOBOLEO is fundamentally organized around the concept of Collaboration Spaces.
A Collaboration Space is the virtual space in which collaboration between people
with a shared goal takes place. Each Collaboration Space has one SKOS ontology and
may have information about documents and experts that are annotated with this
ontology. All information in a space is jointly edited by the members of this space
(spaces can also be configured to allow anonymous users to read and write). Each
SOBOLEO installation supports an arbitrary number of collaboration spaces and
these are (except for user data) completely independent of each other.

Fig. 1. Overview of SOBOLEO’s architecture

Technically each collaboration space is represented by an Event Bus component
that manages the communication within the space. Different parts of the functionality

2

SOBOLEO – Editor and Repository for Living Ontologies 3

are realized as services (both local within the server and remote) that are registered to
the event bus. These services have access to a shared SESAME triple store and to disk
space to store files (e.g. for the text index and logging information). On the server
each collaboration space is represented as one folder that can even be moved between
SOBOLEO installations.

Communication within the space is organized around the concept of Events. Any
change is represented as a Command Event object, a query as a Query Event and
any notification as a Notification Event. The event bus routes these events (and
results) between the requester (mostly in the presentation layer) and the services that
can process it. For example, a delete-concept command event is processed in the
following way: 1) the event bus asks all registered command processing services to
extend this command event with implied commands. In this example implied
commands include the removal of relations that start or end in the deleted concept. 2)
Next a different class of services is asked whether this event is permitted – this tests
the user credentials sent with the event as well as the adherence to SKOS integrity
constraints. 3) Command processors actually execute the change. 4) All registered
event listeners are notified of the changes that have been done.

All events exist as Java objects, as JavaScript objects (allowing to create and
receive them within AJAX applications), as XML serializations (allowing to create
and receive them by applications written in any language) and as SOAP methods
(allowing to create and receive events them from any SOAP client). Thanks to these
interfaces almost all conceivable remote clients can do arbitrary changes to the
collaboration space. The interfaces also allow to poll for recent events – enabling
remote clients to stay up to date with the changes to the information space. We also
supply a (Java) client library that takes care of the communication details and
manages a local copy of the ontology (kept up-to date by polling the server in
customizable intervals). In addition to these custom interfaces, SOBOLEO supports
export of space data as RDF/XML and notification about changes to the information
space in the ATOM format.

SOBOLEO is implemented in Java 6 on top of the Apache Tomcat 6.0 application
server (http://tomcat.apache.org). The AJAX interfaces of the ontology editor and
annotation tool are created with Google’s Web Toolkit framework
(http://code.google.com/webtoolkit). For the storage of RDF data we use Sesame
2.3.0 (http://www.openrdf.org/) and the text index is built on Apache Lucene 2.9.1
(http://lucene.apache.org).

4 User Interface & Functionality

SOBOLEO supports five function groups (detailed below) to support a group of
people in the joint structuring of an information space containing an ontology, data
about documents and people. Following the ideas of Ontology Maturing, SOBOLEO
supports both development and use processes – to seamlessly support the refinement
of the ontology immediately whenever a deficiency becomes apparent in use.

3

4 Simone Braun and Valentin Zacharias,

 The ontology editor enables users to structure the concepts with hierarchical
relations (broader and narrower) and to indicate that concepts are “related”.
Concepts can have a (multi-word) preferred label and a description in
multiple languages; they can have any number of alternative and hidden
labels. The collaborative editor can be used by several users at the same
time. Changes are immediately visible and effective to all users and the
ontology's usage (for search and in the web interface).

Fig. 2. User interface of the ontology editor

 Users can add semantically annotated web-documents to the shared
information space through a document annotation interface that is
available both as a bookmarklet and a web page. For annotating the resource,
users can use any concept from the ontology or arbitrary (multi-word) tags.
New tags are automatically added to the ontology as "prototypical concepts";
users can later consolidate and move them within the ontology. When saving
the bookmark and annotation, the SOBOLEO system automatically sends
out a crawler to fetch and index the contents of the page. The crawler is able
to parse HTML, pdf and both the 2004 and 2007 MS Office formats.

 Annotating people works similarly to annotating web-documents. The
primary idea is to annotate a person (identified by his/her email address) via
his/her personal webpage, e.g. in the intranet, on the company's website or
on a social network site. Each person that is tagged at least once is
represented by one page within SOBOLEO and can also be tagged directly
on this page.

 SOBOLEO’s semantic search engine enables users to search and retrieve
annotated documents and people. The users can type their search terms into a
text field—similar to common internet search engines. The semantic search

4

SOBOLEO – Editor and Repository for Living Ontologies 5

engine analyzes the entered search string for occurrences of concepts from
the ontology. If it recognizes references to concepts, it searches for
documents and people annotated with these concepts or narrower ones. At
the same time it also searches the full text of all annotated webdocuments.
On the result page the users get feedback on which concepts it understood
the query to be referencing. Depending on the search string, the results and
the ontology, the system may also propose a number of query refinements or
relaxations.

 The browsing interface enables users to navigate through the ontology and
the directory of annotated documents and people.

Note that the service oriented structure of the SOBOLEO system and the multitude of
remote interfaces allow easily adding more functions to the SOBOLEO system. For
example in the past we have extended it with capabilities to support structured dialogs
about proposed ontology changes.

5 Related Work and Conclusions

There is a large number of applications that support groups of users in the
collaborative creation of semantic data – the most prominent ones being the semantic
wikis and particularly SMW [3]. SOBOLEO differs from these approaches in the use
of a more specialized user interface geared towards the organization of data external
to the system. PoolParty (http://poolparty.punkt.at/) also offers a web-based SKOS
editor, but lacks comparable tools for the management of relevant web pages and
people. Finally there is also a large number of social semantic bookmarking systems
that combine social bookmarking with some semantics (see [4] for an overview),
however, none of these has a similar functionality with respect to supporting multiple
collaboration spaces or people tagging.

Acknowledgements. This work was supported by the MATURE EU IP under
contract no. 216356.

6 References

1. Braun, S., Schmidt, A., Walter, A., Zacharias, V.: Using the Ontology Maturing Process
Model for Searching, Managing and Retrieving Resources with Semantic Technologies. In:
OTM 2008, LNCS vol. 5332, pp. 1568-1578, Springer, Heidelberg (2008)

2. Zacharias, V., Braun, S.: Tackling the Curse of Prepayment - Collaborative Knowledge
Formalization Beyond Lightweight. In: 1st Workshop on Incentives for the Semantic Web,
ISWC2008, Karlsruhe, Germany (2008)

3. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic Wikipedia. In:
Journal of Web Semantics vol. 5, pp. 251–261, Elsevier (2007)

4. Braun, S., Schora, C., Zacharias, V.: Semantics to the Bookmarks: A Review of Social
Semantic Bookmarking Systems. In: I-SEMANTICS 2009, pp. 445-454, Verlag der
Technischen Universität Graz

5

Collaborative Metadata Editor Integrated with
Ontology Services and Faceted Portals

Jussi Kurki and Eero Hyvönen

Semantic Computing Research Group (SeCo)
Aalto University, School of Science and Technology, and University of Helsinki

http://www.seco.tkk.fi/, firstname.lastname@tkk.fi

Abstract. This paper presents a generic RDF metadata editor SAHA 3
for collaborative content creation and instant semantic content publish-
ing on the Semantic Web. SAHA 3 is a combination of a user-friendly
interface and rich editing tools, that are able to utilize external ONKI
ontology repositories as services. The system is integrated with a faceted
portal engine HAKO, by which the metadata can be published instantly
as a semantic faceted portal. Using the SAHA-ONKI-HAKO integrated
system, a semantic portal can be created very easily by end-users by
defining metadata schemas and related vocabularies, by annotating con-
tent, and by interactively configuring the user interfaces of the editor
and the search engine. The system is in use in several semantic web
applications and scales up to hundreds of thousands content objects.

1 Introduction

The basic process of implementing a faceted (semantic) portal [1–3] includes the
following major steps: 1) Formulate vocabularies/ontologies/facets for represent-
ing domain concepts. 2) Design metadata schemas for representing content using
(1). 3) Annotate content using (1) and (2), typically by a group of distributed
peers in a Web 2.0 fashion. 4) Select the facets (1) and create the portal with
semantic search and browsing facilities. This paper presents the tool SAHA 31

for the latter two phases. The idea is that given a set of domain vocabular-
ies/ontologies/facets and a metadata schema for annotation (phases 1 and 2), a
web-based annotation facility for distributed semantic content creation can be
created instantly without programming skills. In a similar way, a faceted portal
is automatically and instantly created online after annotating the content by
just selecting facets for searching. Again, programming is not needed but only
configuring the system using a web-based interactive interface.

We first describe the main features of the SAHA 3 metadata editor for the
content creation phase, and then the integrated faceted portal engine HAKO2

for content publishing, followed by notes about implementation and scalability.
Finally, contributions of the work w.r.t related systems are discussed, and some
application use cases are listed.

1 http://www.seco.tkk.fi/services/saha/
2 http://www.seco.tkk.fi/tools/hako/

6

2 SAHA 3 Metadata Editor Features

The original requirements for the web-based annotation editor SAHA [4] are
simplicity (hiding technical concepts related to markup languages and ontologies
from its user), adaptivity (to different metadata models), quality (helping and
guiding the annotator to good and correct annotations), collaboration (support-
ing distributed simultaneous annotation at different locations), and portability
(using the system on the web without installing any special software). SAHA 3 is
a completely re-written version of SAHA with the following main new features:
First, there is more support for general RDF editing, e.g. for inline editing of
nested metadata, and for extending internal vocabularies. Second, the system is
scalable to large datasets up to hundreds of thousands of objects. Third, SAHA
3 incorporates a simple publishing platform for building end-user search portals
with full-text and multi-faceted search. The whole pipeline3 from metadata edit-
ing to the end-user portal application is accessible and configurable through a
web-based interface.

During annotation, references to external ontologies are handled using the
ONKI web service interface [5, 6]. SAHA 3 utilizes autocompletion [7, 8] as a key
component to find references. When the user tries to find a concept, SAHA 3 uses
at the same time web services to fetch concepts from connected external ONKI
ontology repositories, and a local index to find locally defined concepts. Results
are shown in one autocompletion result list regardless of origin. The same query
can cover several ontology repositories at the same time. References to resources
within the project at hand and external to it (in an external ontology repository)
are transparent to the user.

The inline editor is new feature in SAHA 3 that has been found very handy by
end-users. The idea is simple: a resource referenced through an object property
can be edited inline at the right location in a small version of the editor inside the
existing editor. In this way, several levels of editors can be opened recursively
within each other, and the RDF network can be edited without moving from
one resource window to another. For example, in Figure 1 the FOAF profile of
the first author of this paper is edited, and the value of the property ”knows”
is opened inline as a similar profile editor for the second author of this paper.
Although the user interface easily becomes cluttered after a few levels, the inline
editor is a handy way to add and edit nested metadata, as in this example shows.

SAHA 3 supports collaborative simultaneous editing. Resources that are be-
ing edited by one user are locked from other users. A chat facility has been
implemented in the editor to facilitate instant discussions between peer editors
(cf. the upper right corner in Fig. 1).

3 Faceted Search Engine HAKO

A SAHA 3 project can be published through the search interface of the HAKO
portal engine. HAKO supports both free-text and faceted search [1–3]. For exam-

3 SAHA Sandbox: http://demo.seco.tkk.fi/saha3sandbox/saha3/main.shtml

7

Fig. 1. Editing FOAF profiles in the SAHA 3 editor. New value for ”knows” is created
inline as a new instance of a person.

ple, Fig. 2 depicts a HAKO application using the RDF store of the Kirjasampo-
system4 containing tens of thousands of instances of literary work of different
kinds. The user has entered the keyword ”tolstoi”. Free-text search is done as a
prefix search by default. On the left, one can see the hit list of 70 books and plays
related to Tolstoi distributed over the facet categories, from where the user can
refine the search either by type or by theme. The facets are configurable—the
administrator can select any object property to be a facet top category.

Apart from the facet administration, HAKO interface is actually only a front-
end to the SAHA 3 model. The configurable, shared data model (including the
indices), and the dataset used by SAHA 3 are the same as those used by HAKO.
This means that all modifications made with the SAHA 3 editor are reflected
on the HAKO interface instantly.

The system is implemented in Java on top of Spring5 framework. The data
model is based on TDB6 RDF database. Full-text search is backed by Lucene7.
The editor interface is built using DWR8 and Dojo9 AJAX-components.

4 http://kirjasampo.fi/
5 http://www.springsource.com/
6 http://openjena.org/TDB/
7 http://lucene.apache.org/
8 http://directwebremoting.org/
9 http://www.dojotoolkit.org/

8

Fig. 2. SAHA3/HAKO multifaceted search interface on ”Kirjasampo”-project.

4 Discussion

SAHA 3 makes use of external distributed ONKI ontology repository services,
which is very handy when utilizing external third party ontologies and large vo-
cabularies. From the interface design viewpoint, inline editing has been found a
very useful feature. A major novelty of the system is the integration of the editor
with a portal engine in real time. The idea of instant creation of a faceted search
engine bears resemblance with SIMILE Exhibit10. However, in our case the sys-
tem is integrated with a metadata editor, ontology services, and Semantic Web
data models, and the search technology is based on Lucene (and not JavaScript)
scaling up to very large datasets. SAHA 3 has been used in projects containing
over 100,000 instances, and it has not shown signs of slowing down, or requiring
large amounts of memory. The Tomcat server11 used runs well below 500MB
with large projects.

SAHA 3 is in production use in the HealthFinland12 system and the Kir-
jasampo project, where some 50 librarians have been annotating metadata about
tens of thousands of novels, short stories, authors, and other objects related to
Finnish literature for a semantic portal. The editor has been used is many ways

10 http://www.simile-widgets.org/exhibit/
11 http://tomcat.apache.org/
12 http://www.seco.tkk.fi/applications/tervesuomi/

9

in CultureSampo13, e.g. for creating the semantic narrative descriptions of the
Finnish History Ontology14 and the Semantic Kalevala epic15. HAKO has been
used in several industrial application demonstrations for searching documents.

Acknowledgements This work is part of the National Semantic Web Ontology
project in Finland16 (FinnONTO, 2003–2012), funded mainly by the National
Technology and Innovation Agency (Tekes) and a consortium of 38 organizations.

References

1. Pollitt, A.S.: The key role of classification and indexing in view-
based searching. Technical report, University of Huddersfield, UK (1998)
http://www.ifla.org/IV/ifla63/63polst.pdf.

2. Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Lee, K.P.: Finding
the flow in web site search. CACM 45(9) (2002) 42–49

3. Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila,
M., Kettula, S.: MuseumFinland—Finnish museums on the semantic web. Journal
of Web Semantics 3(2) (2005)

4. Valkeapää, O., Alm, O., Hyvönen, E.: A framework for ontology-based adaptable
content creation on the semantic web. Journal of Universal Computer Science 13(12)
(2007)

5. Viljanen, K., Tuominen, J., Hyvönen, E.: Ontology libraries for production use:
The Finnish ontology library service ONKI. In: Proceedings of the ESWC 2009,
Heraklion, Greece, Springer–Verlag (2009)

6. Tuominen, J., Frosterus, M., Viljanen, K., Hyvönen, E.: ONKI SKOS server for pub-
lishing and utilizing SKOS vocabularies and ontologies as services. In: Proceedings
of the ESWC 2009, Heraklion, Greece, Springer–Verlag (2009)

7. Hyvönen, E., Mäkelä, E.: Semantic autocompletion. In: Proceedings of the First
Asia Semantic Web Conference (ASWC 2006), Beijing, Springer–Verlag (2006)

8. Hildebrand, M., van Ossenbruggen, J., Amin, A., Aroyo, L., Wielemaker, J., Hard-
man, L.: The design space of a configurable autocompletion component. Technical
Report INS-E0708, Centrum voor Wiskunde en Informatica, Amsterdam (2007)

13 http://www.seco.tkk.fi/applications/kulttuurisampo/
14 http://www.seco.tkk.fi/ontologies/histo/
15 http://www.seco.tkk.fi/applications/kulttuurisampo/kalevala/
16 http://www.seco.tkk.fi/projects/finnonto/

10

Linked Open Ontology Services

Kim Viljanen, Jouni Tuominen, Mikko Salonoja and Eero Hyvönen

Semantic Computing Research Group (SeCo)
Aalto University, School of Science and Technology, and University of Helsinki

http://www.seco.tkk.fi/, firstname.lastname@tkk.fi

Abstract. Ontology repository systems are used for publishing and
sharing ontologies and vocabularies for content indexing, information
retrieval, content integration, and other purposes. However, interlink-
ing these distributed repositories to provide global search and browsing
over the repositories has not been made. In the spirit of Linked Open
Data, we propose creating a network of Linked Open Ontology Services
(LOOS) consisting of ontology repositories that publish their content
using a shared API. To test the approach, we have defined an HTTP
API and present a proof-of-concept implementation consisting of three
client applications that are used for accessing a LOOS network of over
50 ontology servers, part of the Ontology Library Service ONKI.

1 Introduction

Ontology repositories have been considered a key resource for building a global
infrastructure to enable the vision of the Semantic Web [1]. Many ontology
repository systems exist for publishing and sharing ontologies and vocabular-
ies for content indexing, information retrieval, content integration, and other
purposes, e.g. Cupboard [2], BioPortal [3], OOR [4], and ONKI [5].

However, currently each ontology repository is a separate island, with no con-
nections with other repositories. This means that, e.g. global search, browsing,
or inference over the repositories can not be done, which creates a hindrance
for using the ontologies globally. For example, searching for the concepts with
the label “fish” from all existing ontology repositories around the Internet is cur-
rently not possible although many ontology repositories surely contain ontologies
with matching concepts. Because the user may not find the correct ontology or
concept for one’s needs, it means that:

– the quality of annotations may decrease if the optimal concept is not found,
– redundant new ontologies are created if the existing ontologies are not found,
– interlinking of data decreases due to creating redundant ontologies, and
– merging data for semantic web applications becomes more difficult due to

the need for ontology matching.

As a solution to the problem of how to access the repositories globally, in
the spirit of the Linked Open Data1 [6], we propose a Linked Open Ontology

1 http://linkeddata.org

11

Services (LOOS) architecture consisting of ontology repositories that publish
their content through common API, and thus making it possible to access the
different ontology services in a distributed way.

In the following, we present the proposed architecture and API. Then, a proof
of concept implementation of clients and servers is described. Finally, related
work is discussed and contributions of the paper summarized.

2 LOOS API and Metadata About Services

The LOOS Network consists of ontology repositories that publish their content
using a common, uniform LOOS API. A key idea of the LOOS API is to hide
the ontology schema specific representations (such as OWL and RDFS) behind a
uniform, simplified, SKOS-like representation of the key elements of the ontology:
the concepts and their relations. Hiding ontological details makes it easier both to
provide a uniform API to the ontologies and to display the search results from the
underlying repositories in a uniform way to the user. After finding the matching
ontology or concept, if the full power of a specific ontology representation is
needed, the user can be directed to the specific ontology repository.

The main methods of the API are following:2

– search: search concepts
– getLabels: get the labels of a concept
– getEquivalentConcepts: get the equivalents of a concept
– getConceptHierarchy: get the concept hierarchy of a concept
– getFullPresentation: get all the information about a concept
– getDirectory: get the directory view of an ontology

The search method is used for finding concepts using various restrictions, such
as text, concept type, or parent concept. The method returns a list of matching
concepts. To get information about each concept, the properties and relations
of a concept can be queried using methods such as getLabels. For efficiency, the
getFullPresentation method returns all information about a certain concept in
a single request. When browsing an ontology, an overview of the ontology is
helpful. To support this, the getDirectory method returns an ontology-specific
overview of the given ontology, consisting of e.g. the alphabetical ordering of the
concept labels, manually defined grouping of concepts, or the top concepts of
the ontology.

We propose implementing the LOOS API as a lightweight, stateless, and
cacheable HTTP GET based API that returns data using the JSON format
which provides an easy way to add LOOS support to ontology servers.

To find LOOS enabled services, metadata about the services is needed. We
use the property loos:APIBaseURL for describing the URL of each LOOS end-
point. Additional information about the ontology such as title and description
may be expressed using e.g. the Dublin Core metadata schema. Based on the
metadata, e.g. a directory of LOOS services can be published.

2 For the complete API documentation, check: http://www.yso.fi/loos/

12

3 The Proof-of-Concept Implementation

The ONKI SKOS ontology server has been used for publishing over 70 ontologies
in the Finnish Ontology Library Service ONKI [7]. Global search to the ontologies
was however not possible, because the ontologies were running as separate server
instances. To solve this problem, and as a proof-of-concept implementation for
the LOOS aproach, the LOOS API was implemented to the ONKI SKOS server
and the server instances were described with LOOS metadata (see Fig. 1).

Figure 1. The proof-of-concept implementation of LOOS.

Fig. 2. The global LOOS search for “fish” matches many ontologies.

13

The ONKI2 Browser3 is a global search and browsing user interface for ac-
cessing the LOOS network of ontology servers (the ONKI SKOS servers) in a
uniform way . For example, making a global query to all ontology servers can be
done (see Fig. 2). ONKI2 was mostly implemented using PHP4.

Another client is the JavaScript-based ONKI Selector widget [8] for adding
ontological concept search to HTML forms which now supports using the LOOS
network as a back-end. As a third client, we implemented also a URI resolver
for dereferencing the end-user’s ontology concept URI requests to a suitable
representation provided via the LOOS network, such as HTML or RDF.

To make client implementation easier, a broker for accessing the LOOS net-
work was implemented. It provides a registry of LOOS enabled ontology servers
based on the ontology service metadata, a single access point for using the LOOS
network and a cache5 to speed up potentially slow HTTP requests to individual
ontology servers. Based on the registry, the broker directs LOOS requests to
relevant back-end ontology servers.

4 Discussion

Compared to more general methods of accessing RDF data, such as SPARQL6

and Linked Data [6], the LOOS approach focuses on ontologies. For example,
when querying for the concept hierarchy of a concept via the LOOS API, one does
not need to know what RDF properties (e.g. rdfs:subClassOf or skos:broader)
are used in the data to express the hierarchical relations between concepts. The
LOOS API restricts the set of possible queries, which makes it easier to imple-
ment and use the API in the ontology servers and the client applications.

APIs for accessing ontologies and vocabularies presented previously include
the SKOS API7 and the OWL API8. Compared to them, the LOOS API provides
a higher abstraction, independent from specific ontology languages. Compared
to the API’s of BioPortal [3], Swoogle9 and Watson10, the goal of LOOS is to
create a network of ontology servers based on a shared API that is implemented
by all services. Therefore, the LOOS API focuses on a few basic methods that
reflects the basic functionality of ontology repositories, e.g. concept search. In
future, the LOOS API should be made compatible with repository specific APIs.

Ontology servers such as BioPortal and Cupboard support publishing in-
terlinked ontologies, but the ontologies have to be uploaded into a centralized
service for a global search. In contrast, in the LOOS approach ontologies can be
published using a ontology service that is optimized for the specific ontology and

3 http://www.yso.fi/onki2/?l=en
4 http://www.php.net/
5 As a proxy cache we used Varnish: http://varnish-cache.org/
6 http://www.w3.org/TR/rdf-sparql-query/
7 http://www.w3.org/2001/sw/Europe/reports/thes/skosapi.html
8 http://owlapi.sourceforge.net/
9 http://swoogle.umbc.edu/

10 http://watson.kmi.open.ac.uk/

14

the user’s needs while publishing the ontology service’s basic functionality via
the LOOS API to connect the ontology service to a global network of ontology
services.

The loosely coupled LOOS architecture has turned out to be a flexible solu-
tion which makes it easy to implement additional clients when needed. Making
multiple HTTP requests to back-end servers may be slow, but in our test imple-
mentation this lag has not been a problem thanks to the proxy cache between
the clients and the back-end servers.

To conclude, this paper argues that the various ontology servers on the web
should be made accessible using a common API that would provide a simple but
universal methods for accessing the ontology content. As a solution, we propose
the LOOS API and a metadata schema for describing the services.

Acknowledgements This work is part of the National Semantic Web Ontology
project in Finland11 (FinnONTO, 2003-2012), funded mainly by the National
Technology and Innovation Agency (Tekes) and a consortium of 38 organizations.

References

1. Hyvönen, E., Viljanen, K., Tuominen, J., Seppälä, K.: Building a national semantic
web ontology and ontology service infrastructure—the FinnONTO approach. In:
Proceedings of the ESWC 2008, Tenerife, Spain, Springer–Verlag (2008)

2. d’Aquin, M., Lewen, H.: Cupboard - a place to expose your ontologies to applica-
tions and the community. In: Proceedings of the ESWC 2009, Heraklion, Greece,
Springer–Verlag (June 2009) 913–918

3. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C.,
Rubin, D.L., Storey, M.A., Chute, C.G., Musen, M.A.: BioPortal: ontologies and
integrated data resources at the click of a mouse. Nucleic Acids Research 37(Web
Server issue) (2009) 170–173

4. Baclawski, K., Schneider, T.: The open ontology repository initiative: Requirements
and research challenges. In: Proceedings of Workshop on Collaborative Construc-
tion, Management and Linking of Structured Knowledge at the ISWC 2009, Wash-
ington DC., USA (October 2009)

5. Viljanen, K., Tuominen, J., Hyvönen, E.: Ontology libraries for production use:
The Finnish ontology library service ONKI. In: Proceedings of the ESWC 2009,
Heraklion, Greece, Springer–Verlag (2009)

6. Bizer, C., Cyganiak, R., Heath, T.: How to publish linked data on the web.
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/ (July 27 2007)

7. Tuominen, J., Frosterus, M., Viljanen, K., Hyvönen, E.: ONKI SKOS server for pub-
lishing and utilizing SKOS vocabularies and ontologies as services. In: Proceedings
of the ESWC 2009, Heraklion, Greece, Springer–Verlag (2009)

8. Viljanen, K., Tuominen, J., Hyvönen, E.: Publishing and using ontologies as mash-
up services. In: Proceedings of the 4th Workshop on Scripting for the Semantic Web
(SFSW2008), 5th European Semantic Web Conference 2008 (ESWC 2008). (June
1-5 2008)

11 http://www.seco.tkk.fi/projects/finnonto/

15

A User Interface for Ontology Repositories

Jouni Tuominen, Mikko Salonoja, Kim Viljanen, and Eero Hyvönen

Semantic Computing Research Group (SeCo)
Aalto University, School of Science and Technology, and University of Helsinki

http://www.seco.tkk.fi/, firstname.lastname@tkk.fi

Abstract. Finding ontologies and concepts from a collection of ontolo-
gies is a recurring task in many use cases, such as content indexing,
searching, and ontology developing. To facilitate this, efficient search and
browsing methods are needed. This paper introduces ONKI2, an ontol-
ogy browser providing a user interface for a repository of ontologies.
The system provides a multi-facet search facility for finding an ontol-
ogy. Finding concepts is supported by autocompletion-based text search
that can be refined with additional restrictions. ONKI2 is in use in the
Finnish Ontology Library Service ONKI for a collection of 79 ontologies
and vocabularies.

1 Introduction

Tools for finding ontologies and concepts are needed in many use cases, such as
ontology development, ontology-based content indexing, and searching [1]. When
looking for a suitable ontology for a given task in an ontology repository [1–4],
methods for filtering the ontologies based on the needs of the user are needed.
This can be facilitated using the metadata of the ontologies (e.g. name, descrip-
tion, subject, type) and the contents of the ontologies (i.e. the concepts of the
ontology). Also, getting an overview presentation of an ontology is important
for understanding the domain, purpose, and structure of the ontology. When
browsing an ontology, the concepts should be presented in a clear, meaningful
way to the end-user.

This paper introduces ONKI21, an ontology browser providing a user in-
terface for a repository of ontologies and vocabularies. The goal of ONKI2 is
to provide means for finding and utilizing ontologies for content indexers, in-
formation searchers, and ontology developers. The introduced system is in use
providing access to a collection of 79 ontologies of various domains. In the fol-
lowing, means for finding ontologies and concepts in ONKI2 are first presented.
After this, the system implementation is described. In conclusion, related work
is discussed and the contributions of the paper are summarized.

2 Finding Ontologies

Finding a suitable ontology in a repository of ontologies may be laborious with-
out efficient filtering methods. To facilitate the search process of an ontology,

1 http://www.yso.fi/onki2/?l=en

16

ONKI2 provides a multi-facet search interface integrated with text search. The
idea is illustrated in Fig. 1. The available facets are the subject, structure, and
publishing status of the ontology. The ontologies are assigned to the facets by
utilizing the ontology metadata provided by the ontology developers, allowing
filtering ontologies from different perspectives. The autocompletion text search
is matched to the names and descriptions of the ontologies. In Fig. 1 the user
is searching for a public (publishing status facet) advanced vocabulary (struc-
ture facet) in the domain of health or nature (subject facet) with a query string
“mes”.

Fig. 1. Multi-facet search view of ontologies.

Once an ontology is found, it can be further examined by accessing the direc-
tory view of the ontology. The purpose of the directory is to give an overview of
an ontology and act as a starting point for browsing it. Depending on the type
of the ontology, the directory is either based on the groups categorizing the con-
cepts, on the topmost concepts of the ontology (in SKOS vocabularies), or on the
alphabetical ordering of the concepts. ONKI2 also supports searching ontologies
based on their contents. An autocompletion text search is provided, matching to
the labels of the concepts in all the ontologies of the collection. Thus, the user
can find all the ontologies containing e.g. the concept “cat”. Concept searching
is discussed in more details in the following section.

3 Finding Concepts

For finding concepts in a collection of ontologies, ONKI2 provides a user inter-
face with searching and browsing functionalities, as depicted in Fig. 2. Concepts
can be searched by using autocompletion text search with a possibility to set
additional restrictions. All the ontologies in the collection can be searched si-
multaneously, or alternatively the search can be limited to a single ontology. In
both cases, the search is matched to the labels of the concepts. The search can
be restricted to the concept labels in a specific language, to a specific concept
type, to the group of concepts, or to the subconcepts of a specific concept.

17

Fig. 2. Concept searching and browsing in the UNSPSC vocabulary.

The search result is presented as a list of concept label links. If there are
several concepts with a same label, the concepts are grouped together assuming
that they might be equivalent. When the user selects a concept, the properties
of the concept are shown below the concept label, eliminating the need for un-
necessary navigation between different views of the concepts. The properties are
displayed in an ontology-specific meaningful order for the end-user in order to
support concept understanding. The order can be specified by the developers
of the ontology. Also, possible unnecessary properties can be filtered out from
the property view. Moreover, the user can choose how the property values are
displayed in the view. The values can either be presented compactly to minimize
the used screen space, or more loosely for improved clarity. In the loose pre-
sentation mode, the superconcepts of the concept are presented as an indented
hierarchy tree. In ontologies containing geographical information, a map user
interface component can be used for visualizing the concepts, e.g. by placing
geographical regions and points on the map.

All the property values of concepts that are resources (concepts, types, groups)
are displayed as links leading to a corresponding concept or concept set, enabling
the browsing of ontologies. This means that when selecting a concept from the
concept hierarchy or among the related concepts of a concept, the properties of
the selected concept are shown. If the selected resource is a concept group, the
concepts belonging to the group are displayed as a search result list. Similarly, if
a concept type is selected, concepts of that type are displayed. Mapping relations
between ontologies can be used for inter-ontology browsing.

18

In Fig. 2 the user is searching for concepts in the vocabulary United Na-
tions Standard Products and Services Code (UNSPSC)2 that are subconcepts
of the concept “Services”. The string “ap” was used for querying the concept
labels. From the search results, the user has selected the concept “Apiculture”
for further investigation.

4 System Implementation

ONKI2 is implemented as a PHP3 application by using the Zend Framework4

for providing the Model-View-Controller architecture. The ontology multi-facet
search view is generated with the SIMILE Exhibit Publishing Framework5. For
processing the metadata of the ontologies, the ARC RDF library6 is used. The
map user interface component is provided by Google Maps7.

The ontologies accessed with ONKI2 are represented by using RDFS, OWL,
and SKOS. The ontologies are published in ONKI SKOS ontology server [5] in-
stances. The ONKI SKOS servers are accessed by utilizing their HTTP API8 for
generating the ontology directory views, providing concept search and showing
the properties of the concepts.

5 Discussion

The previously developed Ontology Library Service ONKI [1] supports pub-
lishing a collection of ontologies in different ontology servers, such as ONKI
SKOS [5]. However, the ontologies are displayed only as a simple listing, and
searching for concepts from all the ontologies simultaneously is not supported.
Browsing between ontologies is possible if the ontologies contain mapping rela-
tions. BioPortal [2] is an ontology repository for accessing and sharing ontologies
in the biomedical domain. The system is also used in the Open Ontology Repos-
itory Initiative [4]. It supports searching for concepts from all the ontologies and
browsing between ontologies. Ontologies can be filtered based on their categories
and groups.

Another ontology repository supporting concept searching and browsing of a
collection of ontologies is Cupboard [3]. It provides an overview for an ontology
by generating a graph of the key concepts of the ontology. It also supports col-
laboration by introducing commenting and reviewing options and shared spaces
for publishing and grouping ontologies. Also semantic web search engines such
as Watson [6], Swoogle [7], and Sindice9 provide means for locating ontologies

2 http://www.unspsc.org
3 http://www.php.net
4 http://framework.zend.com
5 http://www.simile-widgets.org/exhibit/
6 http://arc.semsol.org
7 http://maps.google.com
8 http://www.yso.fi/onkirest/
9 http://sindice.com

19

and concepts on the web. However, as general RDF search engines, their support
for understanding and browsing ontologies is rather limited due to the lack of
visualization methods suited for ontologies.

ONKI2 is a general-purpose ontology browser for a collection of ontologies,
supporting finding ontologies and concepts from the collection. The ontologies
and their concepts are displayed in a meaningful, intuitive way for facilitating
their understanding and usage as ready to use ontology web services [1, 5]. Fur-
thermore, ONKI2 provides access to a network of distributed ontology reposito-
ries conforming to the Linked Open Ontology Services (LOOS) architecture [8].

Acknowledgements This work is part of the National Semantic Web Ontology
project in Finland10 (FinnONTO, 2003–2012), funded mainly by the National
Technology and Innovation Agency (Tekes) and a consortium of 38 organizations.

References

1. Viljanen, K., Tuominen, J., Hyvönen, E.: Ontology libraries for production use: The
Finnish ontology library service ONKI. In: Proceedings of the European Semantic
Web Conference ESWC 2009, Heraklion, Greece, Springer–Verlag (2009)

2. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C.,
Rubin, D.L., Storey, M.A., Chute, C.G., Musen, M.A.: BioPortal: ontologies and
integrated data resources at the click of a mouse. Nucleic Acids Research 37(Web
Server issue) (2009)

3. d’Aquin, M., Lewen, H.: Cupboard - a place to expose your ontologies to applications
and the community. In: Proceedings of the European Semantic Web Conference
ESWC 2009, Heraklion, Greece, Springer–Verlag (2009)

4. Baclawski, K., Schneider, T.: The open ontology repository initiative: Requirements
and research challenges. In: Proceedings of Workshop on Collaborative Construc-
tion, Management and Linking of Structured Knowledge at the ISWC 2009, Wash-
ington DC., USA (2009)

5. Tuominen, J., Frosterus, M., Viljanen, K., Hyvönen, E.: ONKI SKOS server for
publishing and utilizing SKOS vocabularies and ontologies as services. In: Proceed-
ings of the European Semantic Web Conference ESWC 2009, Heraklion, Greece,
Springer–Verlag (2009)

6. d’Aquin, M., Baldassarre, C., Gridinoc, L., Sabou, M., Angeletou, S., Motta, E.:
Watson: Supporting next generation semantic web applications. In: Proceedings of
IADIS International Conference on WWW/Internet, Vila Real, Portugal (2007)

7. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
Proceedings of the ACM International Conference on Information and Knowledge
Management, New York, NY, USA, ACM (2004)

8. Viljanen, K., Tuominen, J., Salonoja, M., Hyvönen, E.: Linked open ontology ser-
vices. In: Proceedings of the Workshop on Ontology Repositories and Editors for
the Semantic Web (ORES 2010), the Extended Semantic Web Conference ESWC
2010, Heraklion, Greece (2010)

10 http://www.seco.tkk.fi/projects/finnonto/

20

OWLGrEd: a UML Style Graphical Editor for OWL

Jānis Bārzdiņš, Guntis Bārzdiņš, Kārlis Čerāns,
Renārs Liepiņš, Artūrs Sproģis

Institute of Mathematics and Computer Science, University of Latvia,

Raina blvd. 29, LV-1459, Riga, Latvia
Janis.Barzdins@lumii.lv, Guntis.Barzdins@lumii.lv, Karlis.Cerans@lumii.lv

Renars.Liepins@lumii.lv, Arturs.Sprogis@lumii.lv

Abstract. There have been many attempts to visualize OWL ontologies but
none of them is considered completely satisfactory and this is still an open
problem. We propose a UML style graphical editor for OWL which not only
visualizes ontologies using extended UML class diagram notation but also
provides ontology editing facilities unavailable in most of the other tools.
Moreover, the editor contains additional features for graphical ontology
exploration and development including interoperability with Protégé 4.

Keywords: OWL, graphical editor, visualization.

1 Introduction

Thousands of ontologies were developed in the past years and surely more will be
developed in the future, therefore availability of efficient ontology development tools
including graphical editors is essential. Ontologies are usually described in Web
Ontology Language (OWL) which originally was defined as an extension to RDF
graphs, therefore one of OWL canonical forms is a set of subject-predicate-object
triples. This format is very uniform, which makes it easy to parse and store in
computers, but it is completely unusable for humans. Humans tend to think in terms
of higher abstraction levels like classes, instances and relations, but the current
ontology visualization tools like IsaViz [1], OWLViz [2], GrOWL [3], Welkin [4],
etc. visualize ontologies by showing every RDF triple as two nodes with a labeled
arrow between them. Thus the information gets cluttered and spread over a large area,
making the structure hard to perceive.

For a graphical form to be useful it has to group related concepts together – the
approach that has been successfully used, e.g. in UML class diagrams. Many concepts
of OWL are very similar to those of UML class diagrams and therefore there have
been attempts to define a UML profile for OWL [5] that would make it possible to
use existing UML tools to create and visualize ontologies. However, OWL has more
features than UML class diagrams like class expressions, anonymous classes, etc.,
which are commonly used, but have unintuitive graphical representation. Therefore,
even though a UML profile is better than RDF graphs, it is still hardly
comprehensible. Another option is to use Protégé OWL editor [6] that enables to load

21

and save ontologies, edit its classes and properties, and define a class taxonomy. It
provides a detailed view for each concept in an ontology, but does not show well its
overall conceptual structure.

Our proposal is to extend the UML class diagram notation with Manchester-like
syntax for the missing OWL features (chapter 2), thus making the notation compact
and comprehensible. We have developed an editor for this notation that has a number
of features to ease ontology creation and exploration, e.g. different layout algorithms
for automatic ontology visualization, search facilities, intelligent zooming, graphical
refactoring and interoperability with Protégé (chapter 3). In fact, the application of
UML class diagram notation to OWL is not completely new and has been
implemented in TopBraid Composer [7]. However, it is based on simplified UML
class diagram model, lacks graphical editing facilities, and the available graphical
services are limited as well.

2 Compact OWL Graphical Notation

The proposed graphical notation is based on UML class diagrams. For most features
there is one to one mapping from OWL to UML concepts, e.g. ontologies to
packages, OWL classes to UML classes, data properties to class attributes, object
properties to associations, individuals to objects, etc. Meanwhile there are added also
a number of new graphical elements that are not part of UML notation. Classes have
fields where OWL expressions can be inserted, e.g. equivalent class expressions,
superclass expressions and disjoint class expressions. Similar fields are added to
associations and attributes. Anonymous classes are shown as boxes with only
equivalent class expression definition possibility. There are a number of ways to
visualize anonymous superclasses:

1) as a textual expression inside a subclass box,
2) as a generalization line from the subclass to the corresponding anonymous class,
3) as multiplicity constraints in association, or
4) as a restriction line towards the corresponding class (e.g. the red line eats

between Lion and Herbivore in fig. 2).
Ontology may be split into multiple diagrams inside a package with each diagram
showing a different view of the ontology or its subset. Multiple generalization lines
can be merged with a fork symbol, to reduce the number of incoming lines in a
superclass. The editor provides means to switch from one graphical form to another
(chapter 3), e.g. merge generalization lines within a fork.

To better explain the proposed notation let us consider an example in Figure 1. It
shows a simple ontology representing people, cars, their properties and relations. This
visualization uses only standard features of UML class diagrams. Classes are
represented by rectangular boxes and data properties are shown as labels inside the
class box. Object properties are represented with lines between boxes corresponding
to their domain and range classes. If object property has an inverse then both are
represented with the same line, e.g. owner and owned-car. Object properties can
alternatively be shown as labels inside domain class box, e.g. object property model.
Cardinality restrictions of such inline-shown properties are depicted in square

22

brackets next to the corresponding property name, in the same way as in regular class
diagrams. If a range of a data property is an enumeration of values, then the
enumeration is depicted as a box with rounded corners, e.g. Color. The fact that a
class is defined by its instances is shown with a label <<EnumeratedClass>>, e.g.
class Model.

Fig. 1. Proposed graphical notation and corresponding Manchester notation

Next example already uses some graphical notations that are not a part of UML.
Figure 2 depicts the popular African wildlife ontology. The red lines are ‘some values
from’ and ‘only values from’ restrictions encoded as subclasses in OWL. It is obvious
that this notation eases the comprehension of ontology, e.g. Tasty-plant must be eaten
by some Carnivore and some Herbivore. Super properties are depicted as a text next
to subproperty’s name, e.g. {<eaten-by} next to subproperty name eaten-by-animal
(symbol ‘<‘ corresponds to ‘subproperty’ in UML notation).

Fig. 2. Extended graphical notation and corresponding Manchester notation

23

3 Services of the Editor

A number of special services are implemented in our editor to ease ontology
development. One of the services is graphical refactoring that allows modifying
graphical notation without changing semantics as long as the same concept can be
expressed through different constructions. This feature allows the user to choose the
most compact graphical format depending on the context and the taste. One of the
typical situations illustrating the need for graphical refactoring is generalization and
fork: if there is a single super class with multiple incoming generalization lines, a fork
can be added to reduce multiple lines into a single line, and vice versa.

When ontologies become large, their management becomes more difficult and
additional features are required from the editor. First, a good automatic layout is
crucial for understanding large ontologies and therefore several alternative layout
modes are supported. Second, searching for the specific element in large ontologies
may become painful and irritating without an appropriate service. A search
mechanism implemented in our editor allows finding the necessary element by
specifying the value for one of its text fields. For example, it allows finding classes by
their name or the value of any other text field.

A more advanced service is full interoperability with Protégé 4, an editor widely
used by ontology developers. The interoperability is implemented via custom Protégé
plug-in that allows to send via TCP/IP socket an active ontology from our editor to
Protégé, and vice versa. Ontologies in both directions are sent in interchange format,
but generally any OWL serialization is acceptable. Interoperability allows ontology
developers to use Protégé without changing their habits and afterwards visualize
ontologies in external graphical editor using different automatic layout algorithms as
well as further manual layout tuning. Moreover, a user can specify the way ontologies
will be visualized by selecting notation options in preferences. In our graphical editor
ontology developers can create new ontologies from scratch or alternatively
graphically edit ontologies imported from Protégé; all graphically developed
ontologies can afterwards be exported to Protégé from where they can be stored to
various formats or checked with OWL reasoners.

4 Implementation

The editor is implemented using transformation driven architecture (TDA) [8, 9, 10]
technology. TDA stores its information in the form of MDA-style models that are
connected by model transformations. The user interface in TDA is implemented by
means of universal engines (e.g. a graph diagramming engine, a property editor
engine, etc.). Each individual tool (e.g. OWLGrEd) is created through a specially
designed TDA tool definition configurator that creates instances of Tool Definition
Model storing all meta information about an individual tool – element types, element
styles, constraints and relationships among elements.

The Tool Definition Model instances are then interpreted by a universal interpreter
that in cooperation with other TDA engines processes all end-user’s actions.

24

Furthermore, for OWLGrEd, as for other tools, specific transformations can be
created to support domain specific needs. In our case, only transformations supporting
interoperability with Protégé, and specific attribute and annotation parsers had to be
created. Thanks to the use of TDA it took only six person-months to produce the beta-
version of the OWLGrEd editor, including development of Protégé plug-in and the
design of the actual graphical notation (this has been the most time consuming part).
The latest editor version can be downloaded from http://OWLGrEd.lumii.lv.

5 Conclusion and Future Work

In this paper we described a new, compact OWL graphical notation and a beta-
version implementation of the actual graphical editor. Our notation is based on UML
class diagrams with additional constructs for OWL specific concepts – our aim is to
cover full OWL 2.0 specification. The editor has a number of features to ease
ontology exploration and development, e.g. automatic layout algorithms and options
for selecting which concepts shall be displayed. We are planning to add an option to
store graphic layout information inside ontologies (we consider adding it as a special
kind of annotations). We would also like to improve integration with Protégé, in
particular, to synchronize ontologies in both tools after every editing step - current
implementation allows exchanging only whole ontologies.

References

1. IsaViz, http://www.w3.org/2001/11/IsaViz/
2. OWLViz, http://www.co-ode.org/downloads/owlviz/
3. GrOWL, http://www.uvm.edu/~skrivov/growl/
4. Welkin, http://simile.mit.edu/welkin/
5. UML profile, http://www.omg.org/spec/ODM/1.0/PDF/
6. Protege, http://protege.stanford.edu/
7. TopBraid Composer, http://www.topquadrant.com/products/TB_Composer.html
8. Barzdins, J., Rencis, E., Kozlovics, S. The Transformation-Driven Architecture,

Proc. of 8th OOPSLA Workshop on Domain-Specific Modeling. Nashville, USA,
2008, pp. 60-63.

9. Barzdins, J., Cerans, K., Kozlovics, S., Rencis, E., Zarins, A. A Graph Diagram
Engine for the Transformation-Driven Architecture, Proc. of 4th International
Workshop on Model Driven Development of Advanced User Interfaces
(MDDAUI-2009). Florida, USA, 2009, pp. 29-32.

10. Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins, R.,
Sprogis, A.., GrTP: Transformation Based Graphical Tool Building, Proc. of 3th
International Workshop on Model Driven Development of Advanced User
Interfaces (MDDAUI-2007). Nashville, USA, CEUR Workshop Proceedings,
http://ceur-ws.org, vol. 297.

25

OREMP: Ontology Reasoning Engine for
Molecular Pathways

Renato Umeton1, Beracah Yankama1, Giuseppe Nicosia2, and C. Forbes
Dewey, Jr.1

1 Massachusetts Institute of Technology, Cambridge MA 02139, USA,
oremp@mit.edu,

WWW home page: http://cytosolve.mit.edu
2 University of Catania, Viale A. Doria 6, 95125 Catania, Italy

Abstract. The information about molecular processes is shared con-
tinuously in the form of runnable pathway collections, and biomedical
ontologies provide a semantic context to the majority of those pathways.
Recent advances in both fields pave the way for a scalable information
integration based on aggregate knowledge repositories, but the lack of
overall standard formats impedes this progress. Here we propose a strat-
egy that integrates these resources by means of extended ontologies built
on top of a common meta-format. Information sharing, integration and
discovery are the primary features provided by the system; additionally,
two current field applications of the system are reported.

1 Introduction

An increasing number of quantitative biomolecular pathway databases are up-
dated and curated on a regular basis [1, 2], because molecular processes are being
characterized and their descriptions shared continuously. Substantial effort has
been devoted to the creation of searchable biological resources (such as GO [3]
and UniProt [4]) which are publicly available, but there are semantic obstacles
that inhibit their combined use. Different languages (i.e., the data formats) are
spoken by the data sources; there are different abstraction levels; and there is
a lack of an overall frame capable of identifying overlaps and duplications [5].
Some syntactic conversions are available among pathway data-formats, and the
state of the art for adjudication of the discrepancies between two SBML [6] mod-
els is semanticSBML [7], which exploits machine-readable information and the
user input to create a merged SBML model. In the context of large-scale com-
posite biological pathways, the merged-model approach is undesirable because
it destroys the original component models and interrupts the curation process.
For more than two SBML files, the tool must be run repeatedly with user-input,
subjecting it to increasing human error, and suggesting that the order in which
the models are aligned matters. An alternative approach based on the use of
ontologies discerns when and on which topics models are a relevant part of the
large-scale context. The state of the art is represented by BioPortal [8] which
provides uniform access to most of the biomedical ontologies through a single

26

Parser
module

Core
module

Data
facilities

Logic
module

SBML 1
parser

SBML 2
parser

CellML
parser

Database
data

File system
data

. . .

Fig. 1. System components are integrated to work together preserving a flexible
and easily extensible architecture. Each module has different versions used on
the basis of job in progress (e.g., to parse an SBML file, will be dynamically
chosen the SBML parser).

Entity has

Annotation type:STRING, uri:STRING, information:STRING.

Species name:STRING, internalId:STRING, initialValue:REAL,
inPathway:PATHWAY, hooks:SET OF ANNOTATIONS.

Kinetic internalId:STRING, kinetics:FORMULA,
reaction kineticParameters:SET OF PARAMETERS, inPathway:PATHWAY,

reactants:SET OF SPECIES, catalysts:SET OF SPECIES,
products:SET OF SPECIES, hooks:SET OF ANNOTATIONS.

Parameter name:STRING, value:REAL.

Pathway fullname:STRING, hooks:SET OF ANNOTATIONS.

Table 1. Main components of the minimalistic quantitative MIRIAM-compliant
ontology used to abstract heterogeneous resources associated with biomolecular
pathways. The format “attribute:REPRESENTATION” is used.

user-interface and advanced tools to query over biomedical data resources. Still,
there are a lack of strategies for the database and ontology integration of quanti-
tative biological sources written in different standards (e.g., SBML and CellML
[9]). What is described here is a system that creates extended ontologies out of
different biochemical information sources and provides path duplication detec-
tion, sharing, integration, and knowledge discovery over heterogeneous resources.
A prototype exists (MIT license, cf. http://cytosolve.mit.edu/oremp for software
details) with utilities to export the extended ontologies in OWL format. This
combination represents an Ontology Reasoning Engine for Molecular Pathways
(OREMP). The OREMP framework creates extended ontologies out of different
quantitative data formats and can be browsed at different levels of abstraction.

2 The Designed Framework

System Architecture. The system is composed of interchangeable and extensible
components (Fig. 1). The four components interact as follows: (i) the data ac-
cess facilities collect information about multiple pathways and existing biological
databases; (ii) the parser component accesses different file formats (RDF, XML,

2

27

SBML, CellML, etc.) and extracts information from those sources; (iii) the core
module assembles the knowledge from different sources into a coherent ontology
(Table 1), and (iv) the logic component defines the conditions that identify when
two biomolecular species are the same, or two reactions overlap. The combined
execution of the two models without detecting reaction duplication will produce
an incorrect evolution of species concentrations in time. This is a concrete, quan-
titative effect of incorrect ontology alignment. While the operational work-flow
(i-iv) is kept fixed, it is of note that different versions of each component may
be loaded by the system. A user-configurable algorithm chooses at run-time the
components that are required for the current job. Whenever a new modeling
standard is introduced, a new parser can be connected to OREMP to interface
with it as well. Similarly, different users can define different versions of the core
component, for example, according to their understanding about how the knowl-
edge coming from different pathways should be aggregated. A useful analogy is
the way modern graphics display programs seamlessly support different file for-
mats (JPG, TIFF, DCM, etc.). Our approach is different from semanticSBML
in that it provides the user the opportunity to exploit his/her understanding
to define a consistent method of knowledge integration across ontologies. The
independent curation process is preserved by maintaining the pathway identity,
since the primitive element-pathway network is not destroyed by integration.
Finally, we can optionally accept a dictionary of already aligned species, which
can easily scale in the number of input pathways, as related in the next section.

Ontologies From Pathways. The system is constructed of three layers. The bot-
tom layer represents the biochemical pathways, read in their primitive format
(such as SBML and CellML). The second layer abstracts the pathways into a
minimalistic and quantitative meta-format (sketched in Table 1) that includes
all the MIRIAM [10] components. Annotations are preserved and extended with
additional quantitative data to achieve a common description that can be rep-
resented as a single ontology. It is at this level that the extended ontology is
primarily created. Entities and relations created in this manner are homoge-
neous in the ontological sense. This implies that several pathway collections can
be combined in an ontology repository while maintaining a common semantic,
meaning that the following steps can now be taken:
Sharing. Despite disparate initial data formats, the biochemical information
described in each pathway is now homogeneously represented. This enables the
direct reuse of componets (such as species or reactions) coming from different
sources.
Integration. Our system ensures a consistent merging of the resources, auto-
matically aligning the species and showing the end-user possible duplications
among reactions in the different pathways.
Knowledge discovery. Once the species alignment is done and duplicate reac-
tion have been detected, a new step is taken: for each reaction in each pathway
the set of “alternative circuits” is computed. This means that given an arbi-
trary number of pathways, the system will identify all of the alternative ways to
traverse from state S0 to a state S1 (where the states are different species config-

3

28

urations) within the overall set of reactions. In the last layer, all the information
gathered is exported in OWL. With the OWL file we use the semantic tool,
Protégé [11], to visually edit, compare, and finalize the biochemical informa-
tion. With the OWL query interface, the user can now formulate “semantically-
enabled” queries that were impractical when dealing with the previously hetero-
geneous, unaligned data repositories.

3 Usage Examples

OREMP in Combining Pathways for Parallel Solution. This system is embed-
ded in the latest release of Cytosolve [12]. Its contribution to the integration of
runnable pathways is the detection of duplicated reactions among different mod-
els. No matter the models chosen for simulation, once the species are aligned,
the system identifies duplication problems in the reaction-models. From the user
point of view this process is transparent: he/she receives a warning message that
details the duplicated reactions and is prompted to confirm conflict elimination,
and to resolve any differences in reaction kinetic rate constants.

OREMP in Querying Large, Independent Sources of Pathways. Our prototype
was tested against the entire Biomodels.net curated collection [1] that contains
about 240 molecular pathways. The result of the analysis was an overall view
of the database and a list of about 500 groups of overlapping reactions. This
analysis took 50 seconds on a single-core 2GHz Intel CPU. The previously de-
scribed knowledge-discovery-step was taken on these resources as well. For each
species configuration in the database, all alternative circuit paths were com-
puted. This took about 2 hours on a quad-core 2GHz AMD CPU and resulted
in a dictionary of thousands “biological equivalent” circuits (i.e., equivalent re-
action compositions). The latter experiment provides an interesting overview of
the BioModels.net collection that we think can be used to boost the pathway
modeling step - it provides a searchable dictionary of pathway building blocks.
Perhaps more importantly, from the prospective of those who curate collections
of biochemical pathways, this framework can be used to find inconsistencies and
redundancies within their repository.

4 Conclusions

To our knowledge this is the first time that the information coming from different
biological data sources are aggregated into a single quantitative ontology that
can be queried at multiple levels. As detailed in previous sections, the OREMP
application can combine several pathways, merge and combine pathway reposi-
tories, or revert to the original pathways, and inspect single-model details and
query external repositories (such as UniProt and GO) referenced in pathway
element annotations. Our system is independent of the different file formats in
which the pathways are written and contains an extensible collection of parser
modules. We have selected OWL as export format for the extended ontologies

4

29

and have adopted Protégé as our “Data Warehouse” for information storage,
retrieval and reasoning. This framework transforms biomolecular pathways into
extended ontologies to support knowledge sharing, integration and discovery.
Since we generate the ontologies from a common semantics, the latter features
are maintained when pathway collections are used to fill ontology repositories.

References

[1] Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri,
H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J., Hucka, M.: BioModels
database: a free, centralized database of curated, published, quantitative kinetic
models of biochemical and cellular systems. Nucleic Acids Research 34(Database
issue) (2006) D689–691

[2] Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F.: The CellML model repos-
itory. Bioinformatics 24(18) (2008) 2122–2123

[3] Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A.,
Dolinski, K., Dwight, S., Eppig, J., Harris, M., Hill, D., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J., Richardson, J., Ringwald, M., Rubin, G., Sherlock, G.:
Gene ontology: tool for the unification of biology. the gene ontology consortium.
Nature Genetics 25(1) (2000) 25–29

[4] The UniProt Consortium: The universal protein resource (UniProt). Nucleic
Acids Research 35(Database issue) (2007) D193–197

[5] Bauer-Mehren, A., Furlong, L.I., Sanz, F.: Pathway databases and tools for their
exploitation: benefits, current limitations and challenges. Molecular Systems Bi-
ology 5 (2009) 290–303

[6] Hucka, M., Finney, A., Sauro, H., Bolouri, H., Doyle, J., Kitano, H., and the rest
of the SBML forum: The systems biology markup language (SBML): a medium
for representation and exchange of biochemical network models. Bioinformatics
19(4) (2003) 524–531

[7] Krause, F., Uhlendorf, J., Lubitz, T., Schulz, M., Klipp, E., Liebermeister, W.:
Annotation and merging of SBML models with semanticSBML. Bioinformatics
(2009) btp642

[8] Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet,
C., Rubin, D.L., Storey, M., Chute, C.G., Musen, M.A.: BioPortal: ontologies
and integrated data resources at the click of a mouse. Nucleic Acids Research
37(suppl 2) (2009) W170–173

[9] Lloyd, C., Halstead, M., Nielsen, P.: CellML: its future, present and past. Progress
in Biophysics and Molecular Biology 85(2-3) (2004) 433–450

[10] Le Novère, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides,
J., Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H.,
Shapiro, B., Snoep, J.L., Spence, H.D., Wanner, B.L.: Minimum information
requested in the annotation of biochemical models (MIRIAM). Nature Biotech-
nology 23(12) (2005) 1509–1515

[11] Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.:
Creating semantic web contents with protege-2000. Intelligent Systems, IEEE [see
also IEEE Intelligent Systems and Their Applications] 16(2) (2001) 60–71

[12] Ayyadurai, S., Dewey, C.F.: Cytosolve: a scalable computational methodology for
dynamic integration of multiple molecular pathway models. Cellular and Molec-
ular Bioengineering (2010) In review

5

30

CONSISTOLOGY: A SEMANTIC TOOL TO

SUPPORT ONTOLOGY EVOLUTION AND

CONSISTENCY

Najla SASSI, Miracl Laboratory, sassinajla@yahoo.fr

Wassim JAZIRI, Miracl Laboratory,, wassim.jaziri@isimsf.rnu.tn

Faiez GARGOURI, Miracl Laboratory, faiez.gargouri@isimsf.rnu.tn

Abstract

Ontologies recently have become a topic of interest in computer science since they are seen

as a semantic support to explicit and enrich data-models as well as to ensure interoperability of

data. Moreover, supporting ontology’s evolution becomes essential and extremely important,

mainly when using ontologies in changing environments. An important aspect in the evolution

process is to guarantee the consistency of the ontology when changes occur, considering the

changes semantics. This paper proposes the Consistology tool developed to assist users in

expressing evolution requirements and generating coherent ontology versions. This tool, based

on coherent kits of change, has been experimented to evolve an ontology of education.

Key Words: Consistology, Semantic tool, Evolution kits, Ontology, Consistency.

1. Introduction

Changing environments require ontologies adaptable to changes that occur over time.

The adaption of an ontology is a complex process and several evolution problems

must be treated, in particular maintaining the ontology consistency after changing.

The application of a change on ontological entities is a modification of a subset of

knowledge represented in the ontology. Change management requires defining

mechanisms specifying how knowledge can be changed and how to maintain the

consistency of knowledge after each change. In addition, ontological entities are

semantically and conceptually linked, the application of a change in some ontological

entities may have effects on other entities.

We are interested in this paper in defining evolution kits to allow updating ontologies

while preserving their consistency. We also developed an ontology evolution tool

‘consistology’ to assist users in expressing evolution requirements and generating

coherent ontology versions.

This paper is structured as follows. Section 2 presents an overview about the most

representative approaches and tools used in ontology evolution. In Section 3, we

propose our approach to support ontology evolution and to anticipate inconsistencies.

Sections 4, 5 and 6 present the Consistology tool and its application to the education

domain. Section 7 concludes this work.

31

2. State of the art

Several application areas are especially concerned with evolution of data and users

requirements, such as software development [RL05], temporal databases [BB08] and

ontologies.

Software systems are rarely stable following initial implementations. They have

complex structures which are likely to continually undergo changes during their

lifetime. Temporal databases support time-varying information and maintain the

history of the modelled data. They allow the maintenance of data histories through the

support of time semantics at system level. We refer to [BB08] [SBJ+10] for further

information about related work on software development and temporal databases.

Ontologies, like software development and temporal databases, need to change

every time the modelled real world has changed. Ontology evolution is the process of

adaptation of ontology to evolution changes and the consistent management of these

changes to guarantee the consistency of ontology when changes occur [KF01]

[NK04]. It encompasses the set of activities, both technical and managerial, which

ensures that ontology continues to meet organizational objectives and users needs in

an efficient and effective way [Sto04]. According to [Sto04], “Ontology Evolution is

the timely adaptation of ontology to the arisen changes and the consistent propagation

of these changes to dependent artifacts.” It concerns different aspects: the needs to

update and to evaluate data, the changes to apply in conformity with these needs, the

management of inconsistencies in all parts of the ontology as well as in the dependent

artifacts.

According to [MS03], two types of inconsistency can be identified:

• Structural inconsistency occurs when the constraints of the ontology model are

invalid or if the semantics of the subjacent language of ontology is not respected.

• Semantic inconsistency occurs when the significance of the entities of ontology is

changed.

An ontology is considered consistent if its axioms are respected and if it satisfies the

whole of the invariants defined in the model of ontology [MS03].

Stojanovic et al. [SSG+03] proposed an approach for the management of evolution

and the maintaining of consistency for KAON ontologies. The authors proposed the

concept of strategies of evolution which allow choosing the most suitable solutions

for the resolution of inconsistencies

Haase et al. [HS05] also used the concept of strategies of resolution based on the

constraints of OWL-Lite for the detection and the resolution of inconsistencies in

OWL ontologies. However, the resolution of inconsistencies is done after application

of changes. It is ensured in two phases: the detection of inconsistencies which consists

in finding the parts of ontology which do not satisfy the consistency conditions and

32

the generation of changes that allow ensuring the consistency of ontology by

generating additional changes.

Flouris et al. [FP05] differentiate between a consistent ontology and a coherent

ontology. Ontology is inconsistent if there is no interpretation which satisfies all the

axioms of this ontology. It is incoherent if it does not satisfy some predefined

constraints or the related invariants. The predefined constraints describe the consistent

model of ontology. These authors consider the inconsistencies as sign of bad design

and their correction does not relate to the ontology evolution but it is rather related to

the ontology design.

Luong et al. [LD07] distinguish two levels of consistency for the model of ontology:

structural consistency and logical consistency. Structural consistency relates to the

constraints of consistency defined for an ontology model by ensuring a good

organization of the ontological entities at the level of structure. Logical consistency

checks if the elements of ontology remained "semantically correct" after their

evolution.

In [KJL09], the authors investigate how ontologies developed for use in Semantic

Web technology could be used in checking the consistency of requirements

specifications. They use reasoning which is a part of ontology. The TESSI tool has

been developed.

Djedidi et al. [DA10] proposed an approach of enrichment of ontology with an aim of

optimizing and automating the management of changes while ensuring the

consistency and the quality of ontology after evolution.

The maintenance of consistency is ensured through alternatives of resolution of

inconsistency. A model of quality is defined and applied to guide the resolution of

inconsistencies and to evaluate the impact of the suggested alternatives on the quality.

A prototype of the change management system was implemented to manage changes

of OWL ontologies while maintaining their consistency and quality.

In addition, number of scientific and commercial tools for creating, managing and

updating ontologies have been used to build applications in several domains such as

KAON [OVM+04], OntoView [KFK+02], OntoManager [SSG+03], TextToOnto

[MV01], SHOE [HH00], PromptDiff [NM02], Protégé
1
, etc. Some tools dedicated to

ontology debugging are also proposed, such as RADON [JHQ+09], SWOOP

[KPS+05], DION 2 , OntoClean 3 , MUPSter [SC03] etc. Other tools, such as

ConsVISor
4
, do both consistency checking and debugging. A comprehensive survey

on ontology editors and tools can be found in [Den09] [GM03].

1 http://protege.stanford.edu/.
2 http://wasp.cs.vu.nl/sekt/dion/.
3 http://www.ontoclean.org/.
4 http://projects.semwebcentral.org/projects/consvisor/.

33

The analysis of related work shows that no complete framework for managing

ontology coherence is proposed since they do not take into account all steps of the

ontology life cycle. The majority of works conducted so far in the field of ontologies

has focused on ontology construction issues. These works assume that the domain

knowledge encapsulated in ontology does not change over time. Indeed, in dynamic

environments, the domain knowledge evolves continually due to: the evolution in the

application domain, additional functionalities to add to the system, new requirements

of users, needs to better organize and model the information system etc.

Most of existing systems related to the ontology evolution provide only one

possibility for realizing a change, and this is usually the simplest one. For example,

the deletion of a concept always causes the deletion of all its sub concepts. It means

that users are not able to control the way changes are performed (supervision).

In this work, we aim to propose an evolution tool which allows taking into account all

relationships and offers a great level of expression. In addition, the approaches

proposed in the literature are based on the correction of inconsistencies after they

occur. We propose in this paper an anticipatory approach to manage inconsistencies

before they occur. We express the requirements of evolution using types of changes.

For each type of change, we define corrective operations that must be applied in

conjunction with this type of change in order to correct consistencies.

3. An approach based on coherent evolution kits

The identification of types of changes to apply on the ontology formally expresses the

needs of evolution required by users. The types of changes allow users expressing the

requirements of evolution. When they are applied, the ontology changes from a

current version to another one. However, the application of a type of change can

cause inconsistencies on the new ontology version. In fact, types of change ensure

only the modification of ontology. They do not guarantee that the ontology remains

coherent after modifications.

To ensure the consistency of an ontology after evolution, we propose to anticipate

inconsistencies that can be generated by each type of change in order to propose

alternatives to address these inconsistencies [Jaz09]. Thus, we defined coherent

evolution kits. A coherent evolution kit is composed of a type of change and

corrective operations that allow correcting the potential inconsistencies caused by the

considered change. The role of corrective operations is to correct inconsistencies by

proposing additional changes to be applied by the system in combination with the

initial type of change required by users. If several possibilities exist, i.e., various

corrective operations may be applied with different effects, the ontology engineer has

to choose to implement the adequate corrective operation. Each type of change in

addition to the corrective operations forms a "coherent evolution kit" that must be

34

applied in full. We refer to [JSG10] for more details about the evolution kits of

change.

4. Consistology: a tool to ensure consistency of ontologies

In a collaborative setting, given some changes to do on the ontology, users must be

able to: (1) apply changes on the ontology; (2) examine the effects of changes

visually; and (3) accept or reject changes.

Due to the lack of tools providing an efficient automatic support for ontology

evolution, the development of an automatic tool is very useful to maintain uniformity

and consistency of ontologies. We developed the Consistology tool, based on Java

and Eclipse, to serve as an efficient automatic support for ontology evolution.

Changes on the ontology are performed using elementary and composite changes. The

application of elementary and composite changes on the initial ontology allows

generating a new ontology version (Figure 1).

Figure 1. The Consistology tool allows applying elementary and composite changes.

The developed Consistology tool incorporates all actors (expert, ontology designer,

system, user) in the evolution process. The ontology evolution process is initialized

by the ontology designer and the expert, started by the user and guided by the system.

The ontology designer initializes the process of evolution by introducing the ontology

file and defining the metadata related to the semantic relationships. The expert defines

the metadata related to the key concepts of the domain of study.

35

The user expresses evolution requirements using types of changes provided by the

system which controls the required changes and applies the corresponding evolution

kits of change in order to ensure the ontology consistency.

5. Application of Consistology to the Education domain

We present in this section an application of the developed Consistology tool to update

an ontology of education related to the Tunisian higher education system.

The Tunisian higher education system is continually subject to changes to comply

with social, economic and political strategies. Actually, it migrates from the old

classical system toward a BMD (Bachelor’s, Master’s, Doctorate) system. The

transition from the classical to the BMD system will certainly leave questions

especially to students who followed their teachings within the old system. To provide

satisfactory answers to these questions, it is necessary to understand and model the

classical and the BMD systems as well as the transition between them. The modeling

of this transition is also useful for the reuse of the current education system in case of

future evolutions.

The modeling of the Tunisian education system requires a formal representation of

knowledge. We use the ontology to explicit the semantics of the education domain

and to model the classical and the BMD education systems [SJG09b]. The ontology

of the BMD education system is an evolved version of the ontology related to the

classical system. The evolution requires applying types of changes in order to adapt

the old education ontology and to create a new ontology version adapted to the BMD

system. We ensure the evolution of ontology based on primitive and complexes

operators.

The acquisition of knowledge related to the education system is based on the analysis

of technical documents and instruction manuals provided by the Ministry of higher

education as well as interviews with experts of the domain. The ontology construction

is done using Protégé.

We present in the following, an extract from the initial ontology of education

according to the OWL syntax:

36

To express the evolution from the classical education system toward the BMD

system, we apply operators of changes such as:

1. Add new concepts which exist only in the BMD system, such as: MENTION,

OPTIONAL_UNIT, COURSE, OBLIGATORY_UNIT, LICENCE, MASTER1,

MASTER2, EDUCATION_UNIT etc.

2. Add new relationships between concepts such as:

• Equivalence: for example, an equivalence relationship is added between the

concepts: TECHNICIAN and LICENCE, MAITRISE and MASTER1, etc.

• Synonymy: for example, a synonymy relationship is added between the

concepts: MODULE and EDUCATION_UNIT.

6. An illustrative example

We present in this section an example of application of an evolution kit: Add_concept.

In this example, we aim to add a new concept ‘LICENCE’ to a hierarchy of concepts

in the ontology of the classical education system to evolve it towards to the BMD

system.

37

The user introduces an initial ontology to update and selects the type of change to

apply on the ontology, for example Add_Concept (Figures 2 and 3).

Figure 2. The input of Consistology is an ontology (e.g., owl file) to update.

Figure 3. Add a new concept ‘LICENCE’ to the initial ontology.

The type of change Add_Concept generates inconsistencies related to an isolated and

empty concept. To resolve the first inconsistency, the system automatically proposes

to the user to add a new relationship between the added concept and another one in

38

the ontology. In this example, we chose to add a Hierarchy relationship between the

concepts: LICENCE and DIPLOMA (Figure 4). Thus, since it is a hierarchy

relationship, the concept LICENCE inherits the properties from the concept

DIPLOMA and therefore the second inconsistency is resolved.

Figure 4. Add a new hierarchy relationship between the new concept LICENCE and

another concept belonging to the ontology. The new concept LICENCE is added to

the ontology as well as a hierarchy relationship between LICENCE and DIPLOMA.

In addition, the developed Consistology tool allows enriching the ontology by adding

new axioms (Figure 5).

Figure 5. The tool allows enriching the ontology by adding new axioms (optional

extensions). Example: A new axiom ’disjoint classes’ is added between the concepts

LICENCE and INGENIORAT.

39

The application of elementary and composite changes on the initial ontology allows

generating a new ontology version (Figure 6). A historic file is created containing an

ordered sequence of types of changes applied to the initial version.

Figure 6. Consistology produces a new ontology version (OWL file) and a graph

representing the ontology.

7. Conclusion and perspectives

Ontologies represent an explicit specification of a domain and serve as a support for

providing and searching knowledge sources. They need to be modified to reflect new

requirements and must remain coherent.

We express the requirements of evolution using types of changes. However, types of

change allow updating ontology but do not ensure its consistency. The application of

a type of change may produce inconsistencies on ontological entities. To correct

them, corrective operations are defined and automatically done in addition to the type

of changes.

An inconsistent ontology may be the consequence of a bad design or of the

application of changes. We consider that the first case is rather a problem of ontology

design and building. To maintain ontology consistency after applying types of

changes, we developed a proactive approach to manage inconsistencies before they

occur rather than managing them after evolution. This approach is based on evolution

kits, defined to ensure the consistency of ontology after evolution. An evolution kit

anticipates the inconsistencies that can generate each type of change in order to apply

additional changes able to treat them. After the execution of a change, some

corrective operations are automatically applied.

40

To implement types of changes, we developed the Consistology tool. Consistology is

an ontology evolution support which allows users updating ontologies while

preserving their consistency. It is based on elementary and composite changes that

allow expressing the different possibilities of evolution requirements.

Experimentation is presented, related to the evolution of the Tunisian higher

education system. The Consistology tool is used to apply changes on the education

ontology and to adapt it to new evolution requirements.

In future work, we aim to apply the developed system to other applications involving

evolution changes. We will also add other functionalities to support versionning of

ontology and to store and query various versions in an ontological database.

In fact, the problem of evolution and versioning is also present in other application

areas, more especially in the context of databases systems. Dynamic schema evolution

in databases is defined as managing schema changes in a timely manner without loss

of existing data. Particular problems addressed are cascading changes (changes

required to other parts of the schema as a result of a change), ensuring consistency of

the schema, and propagation of the changes to the corresponding database.

Although there are significant differences between schema evolution and ontology

evolution, many of the methods and technologies developed for schema evolution can

be applied or adapted to ontology evolution. Our research in the ontology evolution

can benefit from the many research works in database systems. Thus, we aim to

exploit the techniques of databases to create versions of ontology and to incorporate

additional functionalities in Consistology in order to allow representing, saving,

evolving and accessing to ontology versions.

References

[BB08] Brahmia, Z., Bouaziz, R. (2008). Schema Versioning in Multi-Temporal XML

Databases, Proceedings of the 7th IEE/ACIS International Conference on Computer and

Information Science (IEEE/ACIS ICIS 2008), pages 158-164, Oregon, USA.

[DA10] Djedidi, R., Aufaure, M.A. (2010). ONTO-EVOAL an Ontology Evolution Approach

Guided by Pattern Modeling and Quality Evaluation. FoIKS 2010: 286-305.

[Den09] Denny, M. (2009). Ontology Tools Survey. From

http://www.xml.com/pub/a/2004/07/14/onto.html.

[FP05] Flouris, G., Plexousakis, D. (2005). Handling Ontology Change: Survey and Proposal

for a Future Research Direction. Technical report FORTH-ICS/TR-362.

[GM03] Gómez-Pérez, A., Manzano-Macho, D. (2003). A survey of ontology learning methods

and Techniques, Deliverable 1.5, Universidad Politécnica de Madrid.

[HH00] Heflin, J., Hendler, J. (2000). Dynamic Ontology on the Web, Proceedings of the

Seventeenth National Conference on Artificial Intelligence AAAI/MIT, pages 443-449,

CA.

[HS05] Haase, P., Stojanovic, L. (2005). Consistent Evolution of OWL Ontologies. In A.

Gomez-Perez and J. Euzenat, editors, Proceedings of the 2nd European Semantic Web

Conference (ESWC ’05), volume 3532 of LCNS, pages 182–197. Springer.

 [Jaz09] Jaziri, W. (2009). A methodology for ontology evolution and versioning, The Third

International Conference on Advances in Semantic Processing (SEMAPRO’2009),

pages 15-21, ISBN: 978-1-4244-5044-2, Sliema, Malta.

41

[JHQ+09] Ji, Q., Haase, P., Qi, G., Hitzler, P., Stadtmüller, S. (2009). RaDON: Repair and

Diagnosis in Ontology Networks, Lecture Notes in Computer Science, pages 863-867,

Volume 5554/2009, Springer Berlin-Heidelberg.

[JSG10] Jaziri, W., Sassi, N.,Gargouri F. (2010). Approach and tool to evolve ontology and

maintain its coherence, International Journal of Metadata, Semantics and Ontologies,

Inderscience Publishers, United Kingdom.

[KF01] Klein, M., Fensel, D. (2001). Ontology versioning on the Semantic Web, In

Proceedings of the 1st Semantic Web Working Symposium, Stanford, CA, USA.

[KFK+02] Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D. (2002). Ontology versioning and

change detection on the web. Lecture Notes in Computer Science, pages 247-259, volume

2473, Springer.

[KJL09] Kroha, P., Janetzko, R., Labra, J.E. (2009). Ontologies in Checking for Inconsistency

of Requirements Specification, The Third International Conference on Advances in

Semantic Processing (SEMAPRO’2009), pages 32-37, Sliema, Malta.

 [KPS+05] Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J. (2005). Debugging unsatisfiable

classes in owl ontologies, Journal of Web Semantics, volume 3(4), pages 268-293.

[LD07] Luong, P-H., Dieng-Kuntz, R. (2007). A Rule-based Approach for Semantic

Annotation Evolution, The Computational Intelligence Journal, 23(3): 320-338, USA.

 [MS03] Maedche A., Staab S. (2003), Ontology Learning. In S. Staab & R. Studer (eds.),

Handbook on Ontologies in Information Systems, pages 173-190, Springer.

[MV01] Maedche, A., Volz, R. (2001). The Text-To-Onto Ontology Extraction and

Maintenance System, Workshop on Integrating Data Mining and Knowledge Management

co-located with the first International Conference on Data Mining, San Jose, California,

USA.

[NM02] Noy, N., Musen M. (2002). Promptdiff: a fixed-point algorithm for comparing

ontology versions. In Proceedings of the 18
th

 National Conference on Artificial Intelligence,

pages 744-750, Canada.

[NK04] Noy, N., Klein, M. (2004). Ontology evolution: Not the same as schema evolution,

Knowledge and Information Systems, 6(4):428-440.

[OVM+04] Oberle, D., Volz, R., Motik, B., Staab, S. (2004). An extensible ontology software

environment, In: Steffen Staab, Rudi Studer (Eds.), Handbook on Ontologies, pages 311–

333, Springer, Berlin.

[RL05] Robbes, R., Lanza, M. (2005). Versioning systems for evolution research, In

Proceedings of the 8th International Workshop on Principles of Software Evolution (IWPSE

2005), pages 155-164, Lisbon, Portugal.

[SBJ+10] Sassi, N., Brahmia, Z., Jaziri, W., Bouaziz, R. (2010). From Temporal Databases to

Ontology Versioning: An Approach for Ontology Evolution, Ontology Theory,

Management and Design: Advanced Tools and Models, Ed. Faiez Gargouri and Wassim

Jaziri, IGI-Global, USA (to appear, March 2010).

[SC03] Schlobach, S., Cornet, R. (2003). Non-standard reasoning services for the debugging of

description logic terminologies. In Proceedings of the 18th International Joint Conference

on Artificial Intelligence, pages 355-362, Acapulco, Mexico.

[SSG+03] Stojanovic, L., Stojanovic, N., Gonzalez, J., Studer, R. (2006). Ontomanager - a

system for the usage-based ontology management”, In Proceedings of ODBASE’2003,

pages 858-875, Springer.

[Sto04] Stojanovic, L. (2004). Methods and Tools for Ontology Evolution. PhD Thesis,

University of Karlsruhe.

42

Previewing OWL Changes and Refactorings
Using a Flexible XML Database

Christoph Lange and Vyacheslav Zholudev

Computer Science, Jacobs University Bremen,
{ch.lange,v.zholudev}@jacobs-university.de

Abstract. During their lifecycle, ontologies are changed for diverse rea-
sons: their vocabulary is enhanced to enable additional application or
annotation possibilities, their expressivity is restricted to speed up rea-
soning, their internal structure is refactored for alignment with other on-
tologies or to facilitate maintenance, and many more. Any such change
can have serious consequences on applications using an ontology; there-
fore it has to be done with care. TNTBase is a versioned XML database
supporting virtual documents: XQuery-based views on XML documents
that appear to the user as files. We use this feature in order to preview
changes to OWL 2 XML ontologies: any proposed change is first tested
in a virtual document, before it is applied to the actual ontology. We
demonstrate the flexibility of this approach in several cases of changes,
discuss the limitations of working with ontologies on XML level, and
propose an integration of TNTBase as a backend with ontology editors.

1 Introduction

Change management and refactoring are important parts of the ontology life-
cycle. Originally investigated in software engineering, they are now also gaining
more and more attention and software support in ontology engineering (see, e. g.,
[19, 6]), often within the larger context of ontology evolution [25]. Change man-
agement for ontologies has been defined as “the process of performing the changes
as well as [. . .] the process of coping with the consequences of changes” [12].
Refactoring in software engineering is commonly defined as “a disciplined tech-
nique for restructuring an existing body of code, altering its internal structure
without changing its external behavior” [7]; this definition is also valid for on-
tologies. Typical ontology refactorings include splitting an ontology into several
modules, or, conversely, merging multiple ontologies, moving axioms to another
module of the same ontology, or rewriting axioms to semantically equivalent but
shorter or longer forms (e. g., in description logics, rewriting the two axioms
A v B, A v C into A v BuC). Despite the strict definition of refactoring, prac-
tical development environments, including Protégé, also subsume restructurings
that do change the external behavior of code under “refactoring”, e. g. changing
the URI of an ontology or entity [6]. However, well-behaved tools usually try to
keep the potential damage done by such a change as low as possible by adapting
all ontologies in the current project to it. On the other hand, it is not trivial for a

43

development environment to estimate the full impact of a change, which means
that in practice changes often do break other things, such as other ontologies
based on the current one, ontology-based software implementations, documents
annotated with terms from ontologies, etc. Consider the axiom refactoring exam-
ple mentioned before, and suppose that A, B, and C are not concepts but roles.
Not all description logics support role intersection, so certain reasoners might
not support the supposedly equivalent rewriting of two role inclusions into one.

Therefore, it is safe to assume that any change may break things. When mul-
tiple developers collaborate in a shared repository, this means changes should
be made with care, and that they should be tested. We present a repository sys-
tem that supports testing changes by not making them to the physical ontology
files in the first place, but by creating them as views on the unchanged physical
files. We have implemented this on top of our versioned XML database TNT-
Base for ontologies in the XML encoding of OWL 2. We discuss common change
and refactoring cases and show their realization in TNTBase, also taking larger
engineering workflows as a part of the ontology lifecycle into consideration. At
the same time, this is an experiment in exploring the advantages and limits of
managing OWL ontologies on the level of XML document collections.

2 TNTBase, a Versioned Database for XML
TNTBase is a versioned client-server XML database [27]. Essentially, it consists
of two parts: the core and the application-specific layer. Let us briefly discuss
the technical foundations we need for refactoring OWL 2 XML ontologies.

2.1 The Core
The xSVN module, which integrates Berkeley DB XML [1] into a Subversion
server [23], is the core of TNTBase. DB XML stores HEAD revisions of XML
files; non-XML content like PDF files or images, differences between revisions,
directory entry lists and other repository information are retained in a usual
SVN back-end storage. Keeping XML documents in DB XML allows us to access
those files not only via any SVN client, but also through the DB XML API that
supports efficient querying of XML content via XQuery [2] and modifying it via
XQuery Update [3]. As many XML-native databases, DB XML also supports
indexing, which improves performance of certain queries.

TNTBase is realized as a web-application with two different communica-
tion interfaces: an xSVN interface and a RESTful interface for XML-related
tasks. The xSVN interface behaves like the normal SVN interface – Apache’s
mod_dav_svn module serves requests from SVN clients – with one exception:
When an ill-formed XML file is committed, xSVN aborts the whole transac-
tion. The RESTful [11] interface provides XML fragment access to the versioned
collection of documents:
Querying: As every XML-native database, TNTBase supports XQuery, but

extends the DB XML syntax by a notion of file system paths to address
path-based collections of documents.

44

Modifying: Apart from modifying documents via an SVN client, TNTBase
takes advantage of XQuery Update facilities, and, in contrast to pure DB
XML, versions modified documents: A new revision is committed to xSVN
whenever a documents in a TNTBase repository has been changed.

Querying previous revisions: Although xSVN’s DB XML back-end by de-
fault holds only the latest revisions of XML documents, and others are stored
as reverse deltas against them, it is possible to access and query previous ver-
sions by additionally providing a revision number to the TNTBase XQuery
extension functions. However, previous versions cannot be modified since
once a revision is committed to an xSVN repository, it becomes persistent.

2.2 Application Layer of TNTBase
It turned out that many tasks specific to particular XML formats can be done by
TNTBase, and that was a reason to derive a separate layer on top of the TNT-
Base core and augment this layer with format-specific functionalities. Detailed
information can be found in [28], but let us briefly describe the major features:
Virtual Documents are essentially “XML database views” analogous to views

in relational databases; these are tables that are virtual in the sense that they
are the results of SQL queries computed on demand from the explicitly repre-
sented database tables. Similarly, TNTBase virtual documents (VD) are the
results of XQueries computed on demand from the XML files explicitly rep-
resented in TNTBase, presented to the user as entities (files) in the TNTBase
file system. Like views in relational databases, TNTBase VDs are editable,
and the TNTBase system transparently patches the differences into the orig-
inal files in its underlying versioning system. Thus, a user does not have to
know about the original source of document parts and it allows him to focus
only on relevant pieces of information. Again, like relational database views,
VD become very useful abstractions in the interaction with versioned XML
storage. Technically, VDs are document templates with embedded references
to any number of XQueries and instructions how to fill those templates with
XQuery results. For example, a VD for a table of contents may consist of a
caption, some author information and XQuery that selects all chapter titles
from a collection of documents. For more examples and understanding, check
out [29]. Furthermore, VDs can be addressed directly in XQuery by calling
a dedicated XQuery TNTBase function. Hence they may seemlessly be used
in users’ XQueries as well as comprise the content of other VDs.

Validation and Presentation: TNTBase provides facilities to integrate format-
specific validation and presentation. Simple examples are XSL transforma-
tions and schema validation. But sometimes a user needs even more, e.g.
extract RDF information upon commit and cache it or retrieve a human-
readably rendered representation of a document in semantics-oriented markup.
Utilizing the TNTBase plugin API one can write additional modules and in-
ject them into the application layer. Configuration files are also stored in a
TNTBase repository, so a user do not require access to the server. Commit-
time behavior is defined by the SVN tntbase:validate property that can be

45

assigned to files as well as to whole directories. Pre-commit or post-commit
hooks that are automatically generated take care of processing committed
information based on the configuration files. In case of pre-commit process-
ing a corresponding plugin has access to the documents that are about to
be committed, and may reject a transaction if the collection of committed
documents is format-inconsistent, or clashes with existing documents in the
repository. Last but not least, URLs that are used to perform validation or
presentation are dynamically changed once configuration files are modified.

Custom XQuery modules: A user can write his own XQuery extensions and
store them in the repository. Thus it is not necessary to have modules located
in the server’s file system or remotely. XQuery modules can be referenced
inside repository itself, which is particularly useful if the development of
XQuery modules is still in progress.

3 Previewing Changes and Refactorings in TNTBase

As the main contribution made by this paper, we will analyze how a number of
common OWL ontology change and refactoring tasks can be realized in TNTBase
by means described in section 2. As TNTBase is an XML database, we have
to agree on a fixed XML schema for our implementation. We chose OWL 2
XML [15], the straightforward XML encoding of the functional-style syntax [17]
of OWL 2, in terms of which the direct semantics is specified [16]. The RDF/XML
serialization of OWL is still more widely used but has to sacrifice the elegance of
the functional-style syntax to accommodate for restrictions imposed by RDF’s
graph-based data model. Moreover, RDF/XML is a particularly awkward RDF
serialization, as it cannot be validated against an XML schema, and as there are
too many alternatives for expressing the same facts (cf. [5]). Committing to the
OWL 2 XML serialization is not a conceptual restriction, though, as translations
from and to other serializations can be provided independently, e. g. by the OWL
API [24]. Thanks to the Subversion-based infrastructure, such a translation can
even be integrated almost transparently into TNTBase: A post-commit hook
could translate any committed RDF/XML file to OWL XML.

We assume that the ontologies one wants to work with are stored as OWL
2 XML files in a TNTBase repository.1 The file and directory structure is com-
pletely up to the users. We will not perform changes in the first place, but
preview them. Change and refactoring patterns will be implemented as VDs,
which can be applied to any existing ontology – an actual physical OWL XML
document, or another VD. The latter permits chaining multiple change steps.
Our VDs will usually affect relatively small pieces of an OWL XML document,
while leaving the rest unchanged. Therefore, their implementation will heavily

1 We provide an entry point for a sandbox repository at https://tntbase.org/wiki/

usecase_ontologies, where you can apply the refactorings presented below, or your
own ones, to your ontologies.

46

rely on the XQuery update facility [3], which allows for concisely expressing
changes to XML documents.2

We discuss some typical change and refactoring patterns below. In each case,
we give a general description, then describe its implementation for OWL XML,
and discuss its impact the current ontology or other ontologies depending on the
current one. Changes with a local impact do not affect dependent ontologies, but
they may affect the usage of the current ontology – e. g. if a syntactic construct
is introduced that the reasoner or editor in use does not support. Refactorings in
the strict sense of the definition are local – recall the definition in section 1 –, but
many changes commonly considered “refactorings” – such as renamings – have
non-local effects on dependent ontologies or annotated resources. The larger the
impact of a change becomes, the more desirable do we consider evaluating the
impact by previewing the change using a VD in TNTBase.

3.1 Renaming Entities

All entities of an OWL ontology – classes, properties, and individuals – are
identified by IRIs. Renaming entities is a frequent refactoring task. Such a change
affects the ontology O in which an entity is declared, all ontologies importing O,
and ultimately all external documents or software using O. The refactoring VD
not only has to be applied to O, but to all dependent ontologies. We restrict our
investigations to non-distributed repositories and thus to dependencies within
the same repository. We have not yet automated the cross-document part of this
refactoring; one would have to manually apply the VD to all ontologies in the
repository.3

IRIs can be absolute or relative. Relative IRIs are resolved against the base
IRI, which defaults to the URI of the ontology document but can be changed
using the xml:base mechanism. Absolute IRIs can be abbreviated using a pre-
fix:localname syntax, where prefixes are defined on the top level of the on-
tology, e. g. <Prefix name="foaf" IRI="http://xmlns.com/foaf/0.1/"/>. Renaming
such abbreviated IRIs is still quite straightforward, compared to the RDF/XML
serializations of OWL, which delegates prefix 7→IRI mapping to the more involved
namespacing mechanism of XML.

3.2 Factoring out Modules

When an ontology grows large and hard to manage, developers often identify
modules and factor them out into subontologies. This is, for example, supported
by the Module Extraction plugin of the NeOn Toolkit [18]. Common candidates
for such subontologies are all sub- or superclasses of a given class, possibly with
their instances, with related properties, and other dependent entities. The sub-
ontology S factored out should be connected to the original ontology O via an
2 The transform functions of XQuery Update, which we use here for clarity, are not
yet completely reliable in DB XML. Therefore, our actual implementation explicitly
recurses over XML trees, which is less elegant.

3 In a well-formed collection, applying a VD to all ontologies will not do any harm.

47

import. Either direction of the import could make sense: (i) If O is intended to be
the main ontology reused by other ontologies and applications, O should import
S. Here, O just happens to have a modular structure internally, but applications
need not know that. (ii) Conversely, O can be designed as a core ontology, of
which S is a domain-specific refinement. Applications in the respective domain
would rather use S, which imports O. We have implemented XQuery functions
for selecting certain subontologies, such as the subclasses of a given class, and
generic functions that factor out a given subontology. Previewing such a change
requires two VDs: one for O – removing S from it and possibly replacing it by
an import link –, and one for the new ontology document containing S.

3.3 Merging Modules

The inverse operation to modularization is merging several modules back into
one, which can be desirable for deploying an ontology, or for compatibility with
tools that do not support modular ontologies. Here, we will only consider the
easy case that all modules to be merged are disjoint, i. e. that no two modules
declare two different entities with the same IRI. Then, merging reduces to merg-
ing axioms and removing import links. Multiple ontology modules spread over
different files and directories can be addressed by the tnt:collection XQuery func-
tion. For instance, a part of a query collection(’/onto*//*.owx’) will address all
OWL XML ontologies in the child folders of directories having the onto prefix.

3.4 Rewriting Axioms

In section 1, we have seen a case of rewriting axioms in a semantics-preserving
way. In the migration to OWL 2, there are more such cases. OWL 2 not only
introduces new axiom or construct types that require additional expressivity,
but also mere syntactic sugar [9]. A prominent example for that is the disjoint
union of classes. In OWL 1 one had to state separately the pairwise disjointness
of a group of classes D1, . . . , Dn, and the equivalence D = D1 t · · · tDn.4 The
DisjointUnion axiom of OWL 2 allows for directly stating that D is the disjoint
union of D1, . . . , Dn. In order to make legacy ontologies from the OWL 1 age
more readable, or in order to benefit from performance improvements offered by
OWL 2 reasoners, it is thus desirable to rewrite disjoint unions. This is a change
with a local impact. The XQuery in listing 1.1 rewrites separate declarations
of pairwise disjointness and union equivalence into single disjoint union axioms.
Listing 1.2 shows how that XQuery can be used for creating a VD specification.
Note that we factored out the query itself to a separate module and only reference
it from a specification by providing a repository-scoped URI. In section 4, we will
4 In the RDF/XML syntax, which was the most common one for OWL 1, there was
not even a shorthand notation for expressing pairwise disjointness of more than
two classes. In the following, we will, however, not deal with translations between
RDF/XML and OWL XML, but assume that that has been done before by a lower-
level tool.

48

see how to apply this VD specification to a concrete input document (for more
information on what VD specifications are and how to use them refer to [26, 29])

Listing 1.1. Creating disjoint union axioms
module namespace tntx = "http://tntbase.mathweb.org/ns/ores";

declare function tntx:refactor-disjoint-union(

$doc as document-node()) as document-node() {

copy $tmp := $doc modify (

(: find equivalent class declarations with two children :)

for $equiv in $tmp/owl:Ontology/owl:EquivalentClasses[count(*) eq 2

and owl:ObjectUnionOf (: ... one of which is a union :)

and *[not(self::owl:ObjectUnionOf)]] (: ... and the other one is something else :)

let $whole := $equiv/*[not(self::owl:ObjectUnionOf)] (: D :)

let $parts := $equiv/owl:ObjectUnionOf/* (: D1, ..., Dn :)

(: look for declarations of pairwise disjointness of D1, ..., Dn :)

for $disjoint in $equiv/../owl:DisjointClasses[fn:deep-equal(*, $parts)]

return (

delete node $disjoint, (: delete the disjointness axiom and replace the ... :)

replace node $equiv with (: ... equivalence axiom by a disjoint union axiom :)

<owl:DisjointUnion> { $whole, $parts } </owl:DisjointUnion>)

) return $tmp };

Listing 1.2. VD specification for disjoint union axioms
<tnt:virtualdocument xmlns:tnt="http://tntbase.mathweb.org/ns">

<tnt:skeleton>

<Ontology xmlns="http://www.w3.org/2002/07/owl#">

<tnt:xqinclude>

<tnt:query name="disj.xq"/>

<tnt:return><tnt:result/></tnt:return>

</tnt:xqinclude>

</Ontology>

</tnt:skeleton>

<tnt:query name="disj.xq">

import module namespace tntx = ’http://tntbase.mathweb.org/ns/ores’

at ’tntbase:/modules/refactor/disjoint-union.xq’;

tntx:refactor-disjoint-union(tnt:doc($ontology-path))

</tnt:query>

<tnt:params><!-- parameter declarations, with default values that can be overridden -->

<tnt:param name="ontology-path"> <!-- on creating a VD from this specification -->

<tnt:value>/ontologies/test-ontology.owx</tnt:value>

</tnt:param>

</tnt:params>

</tnt:virtualdocument>

3.5 Lowering Expressivity

OWL 2 has several sub-profiles [14]. They allow for efficient reasoning, as they
correspond to less expressive logics than SROIQ, which covers the full expres-
sivity of OWL 2. There are SROIQ reasoners, but reducing the expressivity of

49

an ontology may be desirable in order to benefit from a more efficient reasoner.
For example, the “QL” profile can be implemented on top of an SQL database.
If an existing ontology is more expressive than the desired profile, certain com-
plex axioms and constructs will have to be removed. Among the axiom types
that OWL 2 QL does not support, there are declarations of functional, inverse
functional, and transitive properties. These are easy to identify, as they are rep-
resented by XML elements on the top level of the ontology. Some constructs are
not allowed in certain places, such as existential quantification in the subclass
position (e. g. ∃R.C v D). Other constructs, such as unions of classes, are com-
pletely forbidden. When lowering the expressivity of an ontology, some forbidden
axiom types, or axioms containing forbidden constructs have to be stripped en-
tirely, whereas others can be weakened. Stripping is easy to implement using
XQuery Update; one would simple delete nodes that satisfy a certain node test.
Weakening usually requires adding a number of new axioms to the ontology. For
example, the union

⊔n
i=1 Ci is the smallest common superclass of C1, . . . , Cn and

can therefore be weakened to a class C with Ci v C for each i = 1, . . . , n. An-
other forbidden construct is the complement of a class in subclass expressions,
e. g. ¬A v B. This can be weakened by introducing a C v B, where AtC v ⊥,
i. e. where A and C are disjoint, which is allowed in OWL 2 QL.

3.6 Stripping Axiom Annotations

OWL 2 introduced annotation of axioms, not just of entities of an ontology.
Axiom annotations do not yet enjoy wide tool support. For example, Protégé
supports them, whereas the NeOn Toolkit doesn’t. They are particularly cum-
bersome to handle when an OWL ontology is represented in RDF (cf. [21]). Thus,
we have implemented a change pattern that strips annotations from axioms. For-
tunately, all kinds of annotations are easy to handle in the XML syntax. They
are simply given as an optional sequence of initial child elements of an axiom:
<ClassAssertion>

<Annotation>

<AnnotationProperty abbreviatedIRI="rdfs:comment"/>

<Literal>TNTBase is a database</Literal>

</Annotation>

<Class abbreviatedIRI="dbpedia:Database"/>

<NamedIndividual IRI="http://tntbase.org/tntbase"/>

</ClassAssertion>

3.7 Common Query Patterns

We realized that some functions are reused in many ontology refactoring XQueries.
Thus, we distilled them into a shared XQuery module that includes common aux-
iliary functions. The most common ones are: getting the base IRI of a node, or
expanding an IRI using the prefix information and the base IRI in the scope (cf.
section 3.1). With standard XQuery – without the update facility –, recursing

50

over an XML tree and returning subtrees with some changes applied would be
another recurring pattern, which can be implemented by a recursive function.
The most involved function we have implemented so far is equality: Reducing
equality of a set of OWL expressions to equality of XML trees (fn:deep-equal),
as done in listing 1.1, is a bit naïve, as it hardly takes into account the se-
mantics of OWL. For example, in many constructs, such as DisjointClasses or
ObjectUnionOf, the order of class expressions does not matter. Other cases of
semantic equivalence of syntactically different expressions are related to IRIs
(cf. section 3.1), which can be written absolutely, relatively, or using prefixes.
Therefore, we have implemented OWL expression equality as a recursive XQuery
function, which defaults to XML tree equality but handles other cases specially.

4 Integration into the Ontology Lifecycle

Over its whole lifecycle, an ontology will change many times, requiring extensive
work with VDs. Applying a single change is straightforward. First, to create a
VD one just has to give it a name and associate it with a VD specification path.
In this step, query parameters can be associated with a VD; for example, the
ontology path parameter in listing 1.2 can be overridden to point to the actual
ontology the user wants to refactor. Then content retrieval is done by providing
a path of a created VD. In XQueries, e. g. in other VDs, the content of a VD
can be addressed by the tnt:vd function. From a user perspective, getting a VD
is the same as getting a usual file. There is one exception, though: VDs can
be obtained only via the RESTful interface of TNTBase. In addition, dynamic
parts of a VD (i. e. parts that are results of VD XQueries) are editable. When a
user modified a VD, he can commit it back using a RESTful method or a special
XQuery function tnt:submit-vd. All changes will be propagated to the original
documents [28]. Another feature of the RESTful interface is materializing of VDs
– when refactoring is finished and the content of a VD looks right5, a user is able
to create a refactored ontology as a physical document in the TNTBase reposi-
tory based on VD content. Alternatively, the possibility of having editable VDs
does not force ontology engineers to materialize all changes: Different developers
can keep different views on (sub)ontologies and work with them, without having
to adapt to a particular structure of the actual physical ontology.

Our approach should scale well to large ontologies. DB XML indexing facili-
ties might tremendously reduce query time. For instance, we experimented with
a collection of 2000 documents and ran filtering queries based on attribute and
element names. Adding indexes reduced the timing from 30 seconds to 0.5 sec-
onds. Whereas we do not claim that such speed improvement will be achieved for
every query, it gives us a better impression how things may scale in TNTBase.
Multiple users can read/write to TNTBase simultaneously – TNTBase secures
every user action with a transaction and takes care about deadlocks resolution.
5 TNTBase itself does not support the collaborative decision making that is required
here. We leave that feature to a future integration of TNTBase into a development
environment that, e. g., supports argumentation.

51

5 Related Work

Several ontology editors offer client-side refactoring. Protégé natively supports
a few basic refactorings [6], whereas for the NeOn toolkit several more sophisti-
cated refactoring plugins have been developed [18]. In contrast, our solution is,
to the best of our knowledge, the only one that supports ontology refactoring in
a server-side repository. Once a VD specification has been provided for change
pattern, any other user can apply it to any ontology and load the result into his
favorite development environment for evaluation and testing. We believe that
the overall workflow would benefit from a closer client-server integration. The
NeOn toolkit seems the most suitable candidate for an integration of our work,
as its underlying Eclipse IDE has a Subversion client built in. We would only
have to add support for those features that require interaction with TNTBase’s
RESTful interface, such as the creation or materialization of VDs. While we have
focused on changes and refactorings, the Evolva framework – implemented as an-
other NeOn plugin – addresses the general challenge of ontology evolution [25].
It validates an ontology after each change, checking for consistency, duplication,
and time-related inconsistencies. TNTBase can perform schema validation on
materialized VDs; more advanced validation can be done by integrating 3rd-
party validation plugins. All in all, Evolva dynamically adapts an ontology to
a changed environment. We believe that such an evolution framework could be
nicely complemented with our database backend. Finally, there are alternatives
to querying OWL 2 XML with XQuery (Update): for example, representing an
OWL ontology as RDF, querying it with SPARQL, and changing it using the
proposed SPARQL-Update [22]. A clear specification of SPARQL under differ-
ent entailment regimes, such as OWL, is under way [8], but the implications on
SPARQL-Update have not yet been investigated. RDF is on a higher abstraction
level than XML, which practically means, for example, that different syntaxes of
encoding IRIs (cf. section 3.1), which make a difference in XQuery, do not affect
a SPARQL query. But the RDF encoding of OWL is contrived in other aspects:
Everything has to be broken down to RDF triples, which introduces artificial
complexity for n-ary structures that can be represented in a straightforward way
in XML. The new SPARQLAS language, however, supports intuitive query for-
mulation in the OWL functional-style syntax [20], which is internally translated
to standard SPARQL. So far, it only covers querying ontologies, though, not up-
dating them. The OWL API [24], the technical basis of Protégé and the NeOn
toolkit, does not change ontologies by queries but programmatically by Java
methods, but makes it convenient to implement refactoring algorithms, as all
OWL constructs are represented as Java objects on a semantic level, abstracting
from a concrete serialization. On the other hand, the OWL API has to parse a
complete ontology into the memory, whereas Berkeley DB XML, the database
underlying TNTBase, does not have to do that, and therefore is more scalable.6

6 Actually, the OWL API is prepared for ontologies stored in databases (cf. [10]). Out
of the box it only provides an in-memory representation, but integrating it with a
TNTBase backend would be feasible.

52

6 Conclusion and Future Work

We have showed how TNTBase, a versioned XML database, supports ontology
changes and refactorings. As changes and refactorings can break modules or re-
sources that depend on an ontology, we do not immediately apply them, but
create them as views on the original ontology, using TNTBase’s virtual doc-
uments. We have showed that several common change patterns can be imple-
mented for OWL XML using XQuery at a reasonable cost – even more so now
that we provide a module of commonly needed functions. Thanks to XQuery
Update, changes can be written down concisely. Applying them to given ontolo-
gies is straightforward as long as the ontologies are implemented in single files;
otherwise more work is required, which could be automated in future, though.
As OWL XML is a direct XML encoding of the OWL functional-style syntax,
in terms of which the direct semantics of OWL has been specified, processing
on XML level is surprisingly close to processing it on a higher “semantic” level.
However, we initially had to implement some of the OWL semantics in XQuery,
such IRI expansion and the somewhat more involved equality of expressions.
Now, these are part of a reusable XQuery module, to which we will add further
functionality, possibly including functions that compute ontology metrics.

Here, we have focused on the repository management and XML querying fea-
tures of TNTBase, but TNTBase can actually do more. For different document
formats, we have shown how to extend TNTBase by XML→RDF translations
that are automatically run when committing an XML file, how to integrate an
RDF triple store, and how to serve Linked Data – raw RDF, or RDFa embedded
into human-readable XHTML documents (think of ontology documentation) [4,
13]. We consider this a beneficial complement to the OWL change and refactor-
ing functionality here. If the OWL ontologies are in a triple store with a reasoner
attached, more sophisticated SPARQL(AS) queries will become possible.

With change patterns and ontologies stored in the same repository, TNTBase
enables an agile way of collaborative refactoring, where a development team can
not only discuss the outcome of a refactoring step, but also easily improve the
change patterns. We will explore the potential of this methodology in further case
studies with real-world ontologies. So far, implementing a change pattern involves
manual XQuery editing, and instantiating requires manual VD administration in
the repository. These tasks could be facilitated for ontology engineers by a closer
integration of TNTBase with a client-side development environment. The NeOn
toolkit can already access Subversion-compatible repositories, and Protégé has
been successfully connected to other kinds of repositories. Therefore, a closer
TNTBase integration seems feasible, and would take us closer to the goal of
editable ontology repositories.

References

[1] Berkeley DB XML. url: http://oracle.com/database/berkeley-db/xml/.
[2] XQuery 1.0: An XML Query Language. Recommendation. W3C, 2007.

53

[3] XQuery Update Facility 1.0. Candidate Recommendation. W3C, 2009.
[4] C. David, M. Kohlhase, C. Lange, F. Rabe, N. Zhiltsov, and V. Zholudev.

“Publishing Math Lecture Notes as Linked Data”. In: ESWC. 2010. arXiv:
1004.3390.

[5] I. Davis. The Sixteen Faces of Eve. 2005. url: http://iandavis.com/blog/
2005/09/the-sixteen-faces-of-eve.

[6] N. Drummond. Protege 4.x Menu Actions and Keyboard Shortcuts. 2009.
url: http://protegewiki.stanford.edu/index.php?title=Protege4Shortcuts&
oldid=6142#Refactor.

[7] M. Fowler. Refactoring Home Page. url: http://refactoring.com.
[8] SPARQL 1.1 entailment regimes. Working Draft. W3C, 2009.
[9] OWL 2: New Features and Rationale. Recommendation. W3C, 2009.
[10] M. Horridge and S. Bechhofer. “The OWL API: A Java API for Working

with OWL 2 Ontologies”. In: OWLED. 2009.
[11] JSR 311: JAX-RS: The Java API for RESTful Web Services. url: https:

//jsr311.dev.java.net/nonav/releases/1.0/index.html.
[12] M. Klein. “Change Management for Distributed Ontologies”. PhD thesis.

Vrije Universiteit Amsterdam, 2004.
[13] C. Lange and M. Kohlhase. “A Mathematical Approach to Ontology Au-

thoring and Documentation”. In: MKM. Springer, 2009.
[14] OWL 2: Profiles. Recommendation. W3C, 2009.
[15] OWL 2: XML Serialization. Recommendation. W3C, 2009.
[16] OWL 2: Direct Semantics. Recommendation. W3C, 2009.
[17] OWL 2: Structural Specification and Functional-Style Syntax. Recommen-

dation. W3C, 2009.
[18] NeOn Toolkit. url: http://neon-toolkit.org.
[19] D. A. Ostrowski. “Ontology Refactoring”. In: IEEE International Confer-

ence on Semantic Computing. IEEE, 2008.
[20] F. S. Parreiras et al. SPARQLAS. url: http://code.google.com/p/twouse/

wiki/SPARQLAS.
[21] OWL 2: Mapping to RDF Graphs. Recommendation. W3C, 2009.
[22] SPARQL 1.1 Update. Working Draft. W3C, 2009.
[23] Subversion. url: http://subversion.tigris.org/.
[24] The OWL API. url: http://owlapi.sourceforge.net.
[25] F. Zablith, M. Sabou, M. d’Aquin, and E. Motta. “Ontology Evolution

with Evolva”. In: ESWC. 2009.
[26] V. Zholudev and M. Kohlhase. “Scripting Documents with XQuery: Vir-

tual Documents in TNTBase”. In: submitted to Balisage: The Markup Con-
ference. 2010. url: http://kwarc.info/kohlhase/papers/balisage10.pdf.

[27] V. Zholudev and M. Kohlhase. “TNTBase: a Versioned Storage for XML”.
In: Balisage: The Markup Conference. Vol. 3. Mulberry, 2009.

[28] V. Zholudev, M. Kohlhase, and F. Rabe. “A [insert XML Format] Database
for [insert cool application]”. In: XML Prague. 2010.

[29] V. Zholudev et al. TNTBase – Virtual Documents. 2010. url: http://

trac.mathweb.org/tntbase/wiki/VD.

54

On the Use of Transformation and
Linked Data Principles in a

Generic Repository for Semantic Web Services

Barry Norton1, Mick Kerrigan2, and Adrian Marte2

1 AIFB, Karlsruhe Institute of Technology, Germany
barry.norton@kit.edu

2 Semantic Technology Institute, University of Innsbruck, Austria
first.last@sti-innsbruck.at

Abstract. As yet, despite many years of research into Semantic Web Services,
there is no standard Semantics-based service model. SA-WSDL, a W3C recom-
mendation, provides links only to an unspecified semantic model from WSDL,
itself merely an XML syntax. Ontology-based approaches such as OWL-S and
WSMO have never advanced beyond the stage of submission to standards bodies.
In this environment one approach to moving forward is exemplified by WSMO-
Lite, which can be viewed as an ‘intersection’ of the features of OWL-S and
WSMO as applied a semantic representation of the relevant structure of WSDL,
the so-called ‘minimal service model’. A relatively newer standards submission,
named the Semantic SOA Reference Ontology and the subject of this paper, takes
instead a ‘union’ approach to the features considered so far. We shall show that
among the advantages of such an approach is its ability to mediate between the
existing models. The major contribution of this paper, alongside detailing the
Reference Ontology, is to show how this mediation can be effected simply using
SPARQL and exemplify the practicality of this solution as the basis for a RESTful
service repository based on Linked Data principles.

1 Introduction

Semantic Web Services (SWS) provide a means for creating richer descriptions for
Web Services, where explicit ontology-based semantics increase automation in service
creation and consumption tasks via reasoning. Semantic Web Services form a layer on
top of existing Web Service technologies and not a replacement for them.

In order to use the semantic descriptions present in a so-called Semantic SOA
(SSOA), to automate the tasks associated with Service-Oriented Architectures (SOA), a
set of reasoning-based platform services are required within the SSOA. These services
are collectively termed a Semantic Execution Environment (SEE) and form the core
of a SSOA-based implementation. There are a number of different implementations of
SEEs currently under development in the research community, which have some com-
mon features. Examples of such Semantic Execution Environments are WSMX [1],
IRS-III [2], and METEOR-S [3].

55

2

The OASIS Semantic Execution Environment Technical Committee (SEE-TC)1,
which is co-chaired by the authors, was established in 2005, with the aim to:

“provide guidelines, justifications and implementation directions for an execu-
tion environment for Semantic Web services. The resulting infrastructure will
incorporate the application of semantics to service-oriented systems and will
provide intelligent mechanisms for consuming Semantic Web services.”

The SEE-TC is in the process of standardizing the types of platform services that
exist within a Semantic Execution Environment for Semantic Web Services, their black
box behaviour, and their interfaces. In order to consistently define these platform service
the SEE-TC have first defined a Semantic SOA Reference Ontology (SSOA-RO), which
provides a description of the elements that need to be modeled in order to effectively
provide semantic description for services.

Currently under public review, on the route towards OASIS standardisation, one
of the main requests was that the Reference Ontology be made available in the form
of RDFS. Work towards this has opened up the possibility, motivated particularly the
SEALS project2, the ability to transform descriptions in existing service models into the
SSOA-RO, and to use this as the basis to produce definitions in these different models.
It has been found that this is largely feasible using the ‘CONSTRUCT’ syntax for the
semantic query language SPARQL.

The authors specified, for the SEALS project, which is concerned with the bench-
marking and evaluation of semantic technologies, RESTful APIs for repositories con-
taining tools, test data (including SWS descriptions), and evaluation results3. The trans-
formation of service descriptions into different service models was included as an in-
stance of ‘synthetic test data generation’, where descriptions stored in the Semantic
SOA Reference Ontology are transformed via SPARQL.

In the meantime, the SOA4All project 4 has pointed out that such a RESTful API
for the management of such descriptions, where the descriptions are exposed in RDF as
they are in the SEALS repository, can be the basis of exposing service descriptions as
Linked Data. In particular, each service is managed via a unique URI, deferencable via
HTTP, and linking to related datasets. The transformations presented in this paper are
applied within a discovery-enabled repository, Discovery Cloud5, interface-compatible
with the SOA4All repository, iServe, for the storage of services in the minimal service
model common to microWSMO and WSMO-Lite, but which also allows retrieval and
inter-translation of WSMO and OWL-S services and goal/template-based discovery.

The paper is arranged as follows: the SSOA-RO is reviewed in Section 2; transfor-
mations from existing models into this ontology are considered in Section 3; transfor-
mations back out to the existing models are exemplified in Section 4; the extension of a
Linked Data-compliant API to these transformations is considered in Section 5; finally,
conclusions are drawn and further work discussed in Section 6.

1 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=
semantic-ex

2 Semantic Evaluation at Large Scale: http://www.seals-project.eu/
3 http://about.seals-project.eu/downloads/category/1-
4 Service Oriented Architectures for All: http://www.soa4all.eu/
5 http://km.aifb.kit.edu/services/DisCloud

56

3

2 OASIS Semantic SOA Reference Ontology

The Semantic SOA Reference Ontology (RO), currently under public review on the
route to OASIS standardisation, is an ontology expressed in RDFS that aims to combine
the features of OWL-S [4], WSMO [5] and WSMO-Lite [6], and be consistent with the
terminology and concepts of the OASIS SOA Reference Model (SOA-RM) [7]. To this
end the starting point for the Reference Ontology is the top-level concepts of the SOA-
RM shown in Figure 1. ‘Execution Context’ and ‘Contract & Policy’ are shown dotted
as the work on their semantic description is considered too early for standardisation.

Fig. 1. Top-Level Concepts of OASIS SOA Reference Model

Figure 2 shows how these concepts are refactored and supplemented in the Semantic
SOA Reference Ontology.

Fig. 2. Top-Level Concepts of OASIS Semantic SOA Reference Ontology

57

4

In particular, the concept of ‘Visibilty’ becomes a global underlying concern via
the expression of the whole service model, not just the information model, in ontology-
based semantics. The associated concept of ‘Reachability’ is subsumed into the WSMO-
inspired notion of ‘Mediation’ (shown in black as a new top-level concept), by which
top-level concepts can be connected together with a specification of the means to over-
come any heterogeneities. Also novel is the WSMO-inspired concept of ‘Goal’, by
which client requirements of a service interaction are documented. The concepts of
‘CapabilityDescription’ and ‘Interface’ are shown as groupings.

We consider now the RDFS definitions for these parts of the SSOA-RO model. The
relevant ‘top-level’ RDFS descriptions are reproduced in Figure 3.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ro: <http://docs.oasis-open.org/semanticsoa/referenceontology/v1.1#> .

ro:TopLevelElement rdf:type rdfs:Class .

ro:ServiceDescription rdfs:subClassOf ro:TopLevelElement .

ro:GoalDescription rdfs:subClassOf ro:TopLevelElement .

ro:Ontology rdfs:subClassOf ro:TopLevelElement ;
rdfs:subClassOf owl:Ontology .

ro:importsOntology rdf:type rdf:Property ;
rdfs:domain ro:TopLevelElement ;
rdfs:range ro:Ontology .

ro:usesMediator rdf:type rdf:Property ;
rdfs:domain ro:TopLevelElement ;
rdfs:range ro:Mediator .

ro:Mediator rdfs:subClassOf ro:TopLevelElement .

ro:hasSource rdf:type rdf:Property ;
rdfs:domain ro:Mediator ;
rdfs:range ro:TopLevelElement .

ro:hasTarget rdf:type rdf:Property ;
rdfs:domain ro:Mediator ;
rdfs:range ro:TopLevelElement .

Fig. 3. Semantic SOA Reference Ontology Top-Level Elements in RDF(S)

Definitions, from the Reference Ontology, relevant for the ‘heavyweight’ definition
of service capabilities, and the functional requirements of clients via goals, are shown
in Figure 4. It should be noted that the Reference Ontology, and SEALS in turn, makes
no particular stipulation about which language should be used to encode rules, using in-
stead a subclass of RDF literal. When RIF6 [8] becomes a standard it might be possible
to rely on this as a common interchange for rules.

6 http://www.w3.org/2005/rules/wiki/RIF_Working_Group

58

5

ro:offersCapability rdf:type rdf:Property ;
rdfs:domain ro:ServiceDescription ;
rdfs:range ro:Capability .

ro:requiresCapability rdf:type rdf:Property ;
rdfs:domain ro:GoalDescription ;
rdfs:range ro:Capability .

ro:Capability rdfs:subClassOf ro:FunctionalDescription .

ro:hasPrecondition rdf:type rdf:Property ;
rdfs:domain ro:FunctionalDescription ;
rdfs:range ro:RuleLiteral .

ro:hasAssumption rdf:type rdf:Property ;
rdfs:domain ro:FunctionalDescription ;
rdfs:range ro:RuleLiteral .

ro:hasSharedVariable rdf:type rdf:Property ;
rdfs:domain ro:FunctionalDescription ;
rdfs:range rdfs:RuleVariableLiteral .

ro:hasPostcondition rdf:type rdf:Property ;
rdfs:domain ro:FunctionalDescription ;
rdfs:range ro:RuleLiteral .

ro:hasEffect rdf:type rdf:Property ;
rdfs:domain ro:FunctionalDescription ;
rdfs:range ro:RuleLiteral .

ro:RuleLiteral rdfs:subClassOf rdfs:Literal .

ro:RuleVariableLiteral rdfs:subClassOf rdfs:Literal .

Fig. 4. Service and Goal Capability Definitions from Reference Ontology

Ranking and lightweight service discovery can be based on the properties shown
in Figure 5. As well as these functional and non-functional descriptions of services,
another important part of Semantic Web Service models concerns the interfaces of ser-
vices. The Reference Ontology’s high-level definitions for these are shown in Figure 6.

ro:hasNonFunctionalParameter rdf:type rdf:Property ;
rdfs:domain ro:TopLevelElement ;
rdfs:range ro:NonFunctionalParameter .

ro:requiresClassification rdf:type rdf:Property ;
rdfs:domain ro:GoalDescription ;
rdfs:range rdfs:Class .

ro:hasClassification rdf:type rdf:Property ;
rdfs:domain ro:ServiceDescription ;
rdfs:range rdfs:Class .

ro:ClassificationRoot rdfs:subClassOf rdfs:Class .

Fig. 5. Further (Non)Functional Definitions from Reference Ontology

59

6

ro:supportsInterface rdf:type rdf:Property ;
rdfs:domain ro:ServiceDescription ;
rdfs:range ro:Interface .

ro:requiresInterface rdf:type rdf:Property ;
rdfs:domain ro:GoalDescription ;
rdfs:range ro:Interface .

ro:Choreography rdfs:subClassOf ro:Interface .

ro:Orchestration rdfs:subClassOf ro:Interface .

ro:hasGlobalActionModel rdf:type rdf:Property ;
rdfs:domain ro:Interface ;
rdfs:range ro:ActionModel .

Fig. 6. Interface Definitions from Reference Ontology

The Reference Ontology also defines a property for Process Models for interfaces,
but no standard has yet been defined for this (this is a topic for future consideration in
the Technical Committee):

ro:hasProcessModel rdf:type rdf:Property ;
rdfs:domain ro:Interface ;
rdfs:range ro:ProcessModel .

Since the transformations detailed in this paper do not currently include orchestra-
tion, since this is a highly heterogeneous part of existing semantic service models, and
furthermore consider only atomic processes (from a client perspective), it is sufficient
to reproduce only the definitions for (choreography) Action Models, shown in Figure 7.

ro:hasInputAction rdf:type rdf:Property ;
rdfs:domain ro:ActionModel ;
rdfs:range ro:Action .

ro:hasOutputAction rdf:type rdf:Property ;
rdfs:domain ro:ActionModel ;
rdfs:range ro:Action .

ro:hasSharedAction rdf:type rdf:Property ;
rdfs:domain ro:ActionModel ;
rdfs:range ro:Action .

ro:communicatesConcept rdf:type rdf:Property ;
rdfs:domain ro:Action ;
rdfs:range rdfs:Class .

ro:communicatesMessage rdf:type rdf:Property ;
rdfs:domain ro:Action ;
rdfs:range rdfs:Resource .

Fig. 7. Action Model from Reference Ontology

60

7

3 Transformations to the Reference Ontology

In order to produce instances of the Reference Ontology from existing service col-
lections, some form of transformation is necessary. For the most part it has been es-
tablished that SPARQL is sufficient to achieve the structural transformations. A set of
CONSTRUCT queries are provided for transformation into — and, as described in Sec-
tion 4, out of — the Reference Ontology from the other models considered. These all
rely on the following prefixes:

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX oservice:<http://www.daml.org/services/owl-s/1.1/Service.owl#>
PREFIX oprofile:<http://www.daml.org/services/owl-s/1.1/Profile.owl#>
PREFIX oprocess:<http://www.daml.org/services/owl-s/1.1/Process.owl#>
PREFIX ogrounding:<http://www.daml.org/services/owl-s/1.1/Grounding.owl#>
PREFIX ro:<http://docs.oasis-open.org/semanticsoa/referenceontology/v1.1#>
PREFIX part:<http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/part.owl#>
PREFIX wsml:<http://www.wsmo.org/wsml/wsml-syntax#>
PREFIX sawsdl:<http://www.w3.org/ns/sawsdl#>
PREFIX wsl:<http://www.wsmo.org/ns/wsmo-lite#>

These queries are exemplified with the ‘OWLS2RO’ transform, whose body is given
in Figure 8.

WHERE
{{?service rdf:type oservice:Service} .
{?service oservice:presents ?profile} .
{?service oservice:describedBy ?process} .
{?process rdf:type process:AtomicProcess} .
{?service oservice:supports ?grounding} .
{?grounding ogrounding:hasAtomicProcessGrounding ?processGrounding} .
{{{?profile oprofile:hasInput ?input} .

{?input oprocess:parameterType ?inputType} .
OPTIONAL
{{?processGrounding ogrounding:wsdlInput ?inputMessage} .
{?inputMessage ogrounding:owlsParameter ?input} .
{?inputMessage ogrounding:wsdlMessagePart ?inputPart} .
OPTIONAL {?inputMessage ogrounding:xsltTransformationString ?inputTransform}}}

UNION
{{?profile oprofile:hasOutput ?output} .
{?output oprocess:parameterType ?outputType} .
OPTIONAL
{{?processGrounding ogrounding:wsdlOutput ?outputMessage} .
{?outputMessage ogrounding:owlsParameter ?output} .
{?outputMessage ogrounding:wsdlMessagePart ?outputPart} .
OPTIONAL {?outputMessage ogrounding:xsltTransformationString ?outputTransform}}}} .

OPTIONAL {?profile oprofile:serviceClassification ?classification}}

Fig. 8. OWLS2RO Transformation Body in SPARQL

It should be noted that, since OWL-S sticks deliberately to the DL fragment of
OWL, it is unable to give the range of input and output types as classes (as this would
require a metaclass), and represents these simply as URIs.

61

8

This can be seen in the result of executing the body with the head ‘SELECT *’ over
a knowledge base containing the ‘BookNonMedicalFlight’ service from the current 1.1
version of the OWL-S Test Collection7, where rows with a binding of ‘?service’ to:

<http://127.0.0.1/services/1.1/BookNonMedicalFlight_service.owls#
BookNonMedicalFlightService>

include one with a binding of ‘?input’ to:
<http://127.0.0.1/services/1.1/BookNonMedicalFlight_service.owls#

BookNonMedicalFlight_Account>

and ‘?inputType’ to:
"http://127.0.0.1/ontology/NonMedicalFlightCompanyOntology.owl#

Account"ˆˆ<http://www.w3.org/2001/XMLSchema\#anyURI>

In post-processing the construct query, therefore, we make direct reference (since
there is no problem doing so in RDFS, or in other target languages such as WSML)
to the class, but preserve the URI-based reference too, in order to recover the OWL-S
description. Figure 9 shows the simple query head where just the Reference Ontology
triples are created.

CONSTRUCT
{?service rdf:type ro:ServiceDescription .
?process rdf:type ro:Choreography .
?process ro:hasGlobalActionModel ?processGrounding .
?processGrounding ro:hasInputAction ?input .
?input ro:communicatesConcept ?inputType .
?input ro:communicatesMessage ?inputMessage .
?inputMessage part:hasPart_directly ?inputPart .
?inputMessage sawsdl:loweringSchema ?inputTransform .
?processGrounding ro:hasOutputAction ?output .
?output ro:communicatesConcept ?outputType .
?output ro:communicatesMessage ?outputMessage .
?outputMessage part:hasPart_directly ?outputPart .
?outputMessage sawsdl:liftingSchema ?outputTransform .
?service ro:hasClassification ?classification .
?service rdfs:subClassOf ro:ClassificationRoot}

Fig. 9. OWLS2RO Transformation Head in SPARQL

Note that the Reference Ontology follows WSMO in grounding a class to an entire
WSDL message, whereas OWL-S uses the specific WSDL 1.1 mechanism of ‘parts’
to map individual inputs. The transform therefore creates such a class using the W3C
simple partonomy vocabulary to form the links to individual concepts. As well as re-
placing URIs with class references in the ‘communicatesConcept’ properties, the post-
processing will concatenate a set of membership tests across the input types to form
a WSML precondition, and form a WSML postcondition by doing the same for out-
put types (such conditions and effects are implicit in OWL-S). Where other pre- and
post-conditions exist in WSML, RIF will be used, when this becomes a standard, to ex-
press these in the most generic way possible. This is unlikely to be possible with SWRL
conditions in OWL-S descriptions, but these are very scarce in practice.

7 OWLS-TC3/htdocs/services/1.1/BookNonMedicalFlight service.owls

62

9

Finally note that the same problem of references to classes complicates the use of
functional classification in OWL-S, which is further compounded by the way in which
service descriptions express the dependency on ontologies. The transform makes the
associated concept a subclass of the functional classification root in the Reference On-
tology, which should be propagated up the subsumption hierarchy, but this is impossible
for OWL-S (though perfectly possible in WSMO and WSMO-Lite descriptions).

4 Transformation from the Reference Ontology

In order to exemplify the transformations from the SSOA-RO into existing service mod-
els, the example from the OWL-S Test Collection considered in the previous section
(i.e., the OWL-S v1.1 BookNonMedicalFlight service) will be transformed to WSMO-
Lite. We elide the common features and show a fragment of the RO2WSMOLite trans-
form, primarily to show the result of the postprocessing described above, in Figure 10.

CONSTRUCT
{?service rdf:type wsl:Service .
?precondition rdf:type wsl:Condition .
?precondition rdf:value ?preconditionValue .
?service sawsdl:modelReference ?precondition .
?precondition rdf:value ?preconditionValue .
?postcondition rdf:type wsl:Condition .
?postcondition rdf:value ?postconditionValue .
?service sawsdl:modelReference ?postcondition .
?postcondition rdf:value ?postconditionValue .

}
WHERE
{?service rdf:type ro:ServiceDescription .
?service ro:hasCapability ?capability .
?capability ro:hasPrecondition ?precondition .
?precondition rdf:value ?preconditionValue .
?capability ro:hasPostcondition ?postcondition .
?postcondition rdf:value ?postconditionValue}

Fig. 10. OWLS2RO Transformation Head in SPARQL

The result of applying this query to the post-processed version of the example con-
sidered in the previous section is shown, as a screenshot of the execution of the query
in the Sesame Workbench, in Figure 11.

In many cases the SAWSDL for service descriptions has already been produced,
though may be updated to include references such as those shown to new WSML ex-
pressions. Where they do not exist they will be created by extension of the existing
WSDL. In each case these will be stored, alongside the RDF representation in the Ref-
erence Ontology in the Test Data Repository.

63

10

Fig. 11. Transformation of OWL-S TC 1.1 Flight Booking Service to WSMO-Lite

5 Service Descriptions as Linked Data

The four so-called ‘Linked Data Principles’ are originally stated8 as follows:

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).
4. Include links to other URIs. so that they can discover more things.

In a resource-oriented, i.e, truly RESTful, service interface it is natural that service
descriptions are identified by resolvable URIs (principles 1 and 2), and this was the
approach taken for repositories in the SEALS project and later SOA4All. Furthermore,
as has been shown, all service models can be represented in RDF (principle 3) and this
is the approach taken in the repository interface in iServe and here. Finally services link
to ontologies used in their description, in particular domain ontology import is exposed
as a subproperty to RDF’s ‘seeAlso’ (principle 4 — further means to meet this principle
are considered in Section 6.

8 http://www.w3.org/DesignIssues/LinkedData.html

64

11

In order to respect Linked Data and REST principles, and remain compatible with
the iServe API used in the SOA4All project, the extensions described in this paper are
encoded as an extension to content negotiation. In HTTP, URIs identify resources but
these might have different representations that can be retrieved. A common example is
in the format used for a picture — a client might ask (preferentially) for a JPG over
a GIF encoding. Similarly in Linked Data we might allow retrieval of RDF content
in RDF/XML, Turtle (n3) etc. The repository interface supported here allows exactly
specification of the RDF format required in the usual ‘accept’ field to the request header.

The service model in which the result should be returned, however, is orthogonal
to the RDF format. One might request a WSMO description in N3, or an OWL-S de-
scription in RDF/XML, for instance. For this reason we introduce a second header field,
which acts like a simplified version of accept headers and negotation, with the key ‘ser-
vice model’ and values that are URIs for each of the service models.

In both cases, i.e. the service model and the RDF encoding, furthermore, there
should be some default in case the client makes no specific request. In order to re-
main compatible with iServe the default service model is the ‘minimal service model’
of WSMO-Lite/microWSMO. Since it is the Web representation, the default RDF en-
coding is RDF/XML.

6 Conclusions and Further Work

This paper has detailed the Semantic SOA Reference Ontology, its definition in RDFS,
and its utility in transforming between existing service models to increase interoper-
ability in the usage of semantic repositories for service descriptions. Concretely it has
shown how SPARQL is, for the most part, sufficient to achieve these transformations.
Finally it has been shown how an API, compatible with Linked Data principles, can be
formed to expose these transformations over a service repository in a RESTful fashion.

On-going work on the repository considers the treatment of templates, used as the
basis for discovery, as permanent resources, i.e. uploaded to the repository just as ser-
vice descriptions, where discovery is carried out on an on-going basis as new service
descriptions are found by crawling and/or uploaded. A ‘GET’ retrieval on the service
template can therefore also return a dynamically-ranked set of services that can be used
to achieve the template behaviour, providing further justification for the claims with
respect to the fourth Linked Data principle.

Future work on the Reference Ontology will consider process models sufficient
for orchestration and it is hoped that these will be derivable from the OWL-S process
model, and that restricted processes will be capable of transformation into the OWL-
S process model, WSML Abstract State Machine-based orchestrations and semantic
BPEL extensions, as already considered — with transformations based on semantic
rule languages — in [9].

65

12

Acknowledgements: The work is supported by the EU FP7 ICT projects SOA4All
(IP 215219) and SEALS (e-Infrastructures 238975). We gratefully acknowledge the in-
sights of project participants Barry Bishop, Reto Krummenacher and Carlos Pedrinaci,
as well as the contributions of all members of the OASIS SEE Technical Committee.

References

1. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic Service-
Oriented Architecture. In: Proceedings of the International Conference on Web Services
(ICWS2005), Orlando, Florida, USA (July 2005)

2. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci, C.:
IRS-III: A broker for semantic web services based applications. In: Proceedings of the 5th
International Semantic Web Conference (ISWC2006), Athens, Georgia, USA (Nov 2006)

3. Verma, K., Gomadam, K., Sheth, A., Miller, J., Wu, Z.: The METEOR-S Approach for Con-
figuring and Executing Dynamic Web Processes. Technical report, LSDIS (24 June, 2005)

4. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S.,
Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Semantic
markup for web services. Available at http://www.daml.org/services/owl-s/
1.1/overview/ (November 2004)

5. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue, J.:
Enabling Semantic Web Services. Springer (2006)

6. Vitvar, T., Kopecky, J., Viskova, J., Fensel, D.: Wsmo-lite annotations for web services. In
Hauswirth, M., Koubarakis, M., Bechhofer, S., eds.: Proceedings of the 5th European Seman-
tic Web Conference. Number 5021 in LNCS, Springer Verlag (2008)

7. OASIS SOA Reference Model TC: Reference model for service oriented architecture 1.0.
Technical report, OASIS (October 2006)

8. Kifer, M.: Rule interchange format: The framework. In: RR ’08: Proceedings of the 2nd Inter-
national Conference on Web Reasoning and Rule Systems. Number 5341 in LNCS, Springer
(2008) 1–11

9. Norton, B., Cabral, L., Nitzsche, J.: Ontology-based translation of business process mod-
els. In: Proceedings of 4th International Conference on Internet and Web Applications and
Services (ICIW 2009), IEEE Computer Society (2009) 481–486

66

iServe: a Linked Services Publishing Platform

Carlos Pedrinaci, Dong Liu, Maria Maleshkova, David Lambert, Jacek Kopecký,
and John Domingue

Knowledge Media Institute, The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK

c.pedrinaci@open.ac.uk

Abstract. Despite the potential of service-orientation and the efforts
devoted so far, we are still to witness a significant uptake of service
technologies outside of enterprise environments. A core reason for this
limited uptake is the lack of appropriate publishing platforms able to deal
with the existing heterogeneity in the service technologies landscape and
able to provide expressive yet simple and efficient discovery mechanisms.
In this paper we describe iServe, a novel and open platform for publishing
services which aims to better support their discovery and use. It exposes
service descriptions as linked data expressed in terms of a simple vocabu-
lary for describing services of different kinds with annotations in diverse
formalisms. In addition to describing iServe, this paper also highlights the
set of principles behind iServe, which we believe are essential for other
generic repositories of semantic information notably ontology repositories.

1 Introduction

Web services are software systems offered over the Internet via platform and
programming-language independent interfaces defined on the basis of a set of
open standards such as WSDL, SOAP, and further WS-* specifications [1]. The
fundamental advantage of Web service technology lies in the support it brings to
developing highly complex distributed systems that maximise reuse of loosely
coupled components. A key constituent of Service-Oriented Architectures is the
service repository, which enables programmatic recording of service descriptions
and their subsequent use in the discovery of suitable services. Service publication
has therefore been at the core of research and development in this area since
the very beginning. However, despite substantial efforts, Web services are not
published on the Web in significant numbers, and in practice, lighter and less
structured approaches such as Web APIs are currently preferred [2].

One of the main reasons for the paucity of service repositories to date has
been the fact that, although they are relatively complex, they do not support
expressive queries, limiting their usefulness [3]. Semantic Web Services (SWS) [4]
research has devoted considerable efforts to overcoming Web services limitations
by enriching them with semantic annotations to better support their discovery,
composition and execution. So far, the impact of SWS on the Web has been
minimal. In fact, although SWS technologies have already demonstrated benefits,

67

research in the area has glossed over the additional effort demanded of users, and
the extra complexity they introduce to the already intricate services technology
stack.

Before any significant uptake of services can take place on the Web, better
mechanisms for creating, publishing and discovering services must be in place. In
particular, service publication must be able to deal with service heterogeneity
(e.g., dealing with both WSDL services and Web APIs), it must be based on
the use of lightweight semantics able to support relatively advanced yet efficient
discovery, and it must be combined with an appropriate set of tools able to
support users in the annotation and publication of services.

In this paper we describe iServe, a platform for the seamless publication
and discovery of services developed in the context of the EU project SOA4All.
iServe addresses the publication of services from a novel perspective based on
lessons learned from the evolution of the Web of Data [5]. iServe transforms
service annotations expressed in a variety of formats into what we refer to as
Linked Services—linked data describing services—that can directly be interpreted
by state of the art Semantic Web technologies for their discovery and further
processing. The iServe platform is complemented with editors that assist users
in creating and publishing service annotations using existing semantic search
engines like Watson [6] for searching the Web for reusable ontologies. The decisions
adopted for iServe include a number of principles that are of particular relevance
for the development of other kinds of repositories for the Web, since they highlight
the importance that ontology repositories or systems like Watson may have when
it comes to creating Semantic Web applications.

The remainder of this paper is organised as follows. First we cover the state
of the art in services description and publication (Section 2). We then introduce
iServe and the core principles that underpin the approach (Section 3). Next,
we discuss openness as one of the essential characteristics of the approach, and
highlight how existing editors and ontology indexing systems can be connected
to iServe to better support the creation and publication of service annotations
(Section 4). Finally, we present our main conclusions and introduce lines for
future research (Section 5).

2 Background and Related Work

The Universal Business Registry part of Universal Description Discovery and
Integration (UDDI) [7] is perhaps the best-known effort to support the publication
of services on the Web. On the basis of UDDI, large companies like SAP, IBM
and Microsoft created a universal registry for enterprise services that could be
accessed publicly but it did not gain enough adoption and it was discontinued in
2006 after five years of use. Today, Seekda!1 provides one of the main repositories
of publicly available Web services. Seekda’s repository currently lists 28,500 Web
services with their corresponding documentation, and this number seems to be

1 See http://webservices.seekda.com/

68

stagnant. The number of services publicly available contrasts significantly with
the billions of Web pages available, and interestingly is not significantly bigger
than the 1,500 services estimated to be deployed internally within Verizon [8].
Other academic efforts in crawling and indexing of Web services on the Web have
found far lower numbers of services [9].

A major reason for the lack of success of repositories such as UDDI was the
fact that, although these registries are relatively complex, they do not support
expressive queries, limiting their usefulness [3]. As a consequence, developers did
not use these systems since the benefits were often not worth the extra effort. A
second reason for the lack of uptake is that Web services have so far essentially
targeted enterprises, which as we saw earlier, do not publish services in any
significant numbers.

The Web services ecology has recently seen a major evolution with the
advent and proliferation of Web APIs and RESTful services [10], and there has
not been much progress on, or even concern with, means for describing and
discovering these newer kinds of services. Perhaps the most popular directory is
ProgrammableWeb.com, which at the time of this writing lists 1,700 APIs and
4,600 mashups. This directory is based on the manual submission of APIs by
users and currently provides simple search mechanisms based on keywords, tags,
or a simple classification, none of which are particularly expressive. APIHut [11]
is a platform that claims to increase the accuracy of keyword-based search of
APIs compared to ProgrammableWeb.com or plain Google search, although it
does not provide richer discovery mechanisms.

SWS [4] have long tried to overcome the limitations of Web service descrip-
tions by enriching them with semantic annotations. The landscape of SWS is
characterised by a number of conceptual models that, despite a few common
characteristics, remain essentially incompatible due to the different representation
languages and expressivity utilised, as well as because of conceptual differences.
Major frameworks include WSMO [12], OWL-S [13], SAWSDL [14], and WSMO-
Lite [15]. Regardless of the differences at the semantic level, the vast majority
of the SWS initiatives are predicated upon the semantic enrichment of WSDL
Web services, and these have turned out not to be prevalent on the Web. Only
recently have researchers started focusing on Web APIs and RESTful services,
the main examples being SA-REST [16] and MicroWSMO [17].

Enhancing service repositories with semantics and supporting automated
discovery has been one of the key topics SWS research has tackled [18–20]. De-
spite demonstrating advantages of semantic annotations in discovering services,
particularly in terms of accuracy and in dealing with heterogeneous data mod-
els, SWS work has overlooked the additional complexity involved in creating
semantic annotations for services. Consequently, there is no significant body of
SWS published in a convenient manner on the Web: the largest public SWS
repository today is probably OPOSSum, a test collection with less than 3000
service annotations which provides programmatic access to its content solely
through direct access to the database management system [21].

69

3 Services Publication as Linked Data

The current state of the art evidences limited use of service technologies on a Web
scale, and existing technologies for publishing and discovering services remain
rather simple, providing limited support and usually based on keyword-based
search. This type of mechanism has proven to be insufficient for the needs of
software developers, hampering uptake [3]. At the other end of the spectrum,
SWS research has aimed for highly advanced discovery techniques but has instead
created additional overheads, notably a considerable bottleneck for the creation
of rich annotations.

The Web of Data is a relatively recent effort, derived from research on the
Semantic Web, whose main objective is to generate a Web exposing and inter-
linking data previously isolated in silos. The Web of Data is based upon four
simple principles, known as the linked data principles, which essentially dictate
that every piece of data should be given an HTTP URI which, when looked
up, should offer useful information using standards like RDF and SPARQL [5].
Moreover, data should be linked to other relevant resources, thereby allowing
humans and computers to discover additional information. Since the linked data
principles were outlined in 2006 they have been widely adopted in academic envi-
ronments, large companies (like the BBC), and national governments (including
the United Kingdom’s), all of whom are progresively publishing large amounts of
data expressed in terms of lightweight ontologies often referred to as vocabularies.

iServe is a novel and open platform for publishing semantic annotations
of services based on a direct application of linked data principles to publish
service annotations expressed in terms of a simple vocabulary for describing
services of different kinds (e.g., WSDL and Web APIs) with annotations in diverse
formalisms (e.g., OWL-S, WSMO-Lite). More concretely, iServe is driven by the
following conclusions drawn from previous research on service repositories and
the progress made by the Web of Data:

– Semantics are essential to reach a minimum level of automation during the
life-cycle of services;

– The annotation of services should be simplified in as much as possible;
– On the Web, lightweight ontologies together with the possibility to provide

custom extensions prevail against more complex models;
– Any solution to deploying services that aspires to be widely adopted should

build upon the various approaches and standards used on the Web, including
Web APIs, RDF, and SPARQL;

– Linked data principles are an appropriate means for publishing large amounts
of semantic data, both for human and machine consumption;

– Links between publicly available datasets are essential for the scalability and
the value of the data exposed.

In the remainder of this section we describe iServe in detail, focusing first on
the overall approach and architecture, then describing the ontology it uses, and
finally presenting the import mechanisms that make it largely compatible with a
wide range of service annotations.

70

3.1 Overall Approach

iServe supports publishing Linked Services expressed in terms of a simple con-
ceptual model that is suitable for use by both humans and machines, and which
abstracts away the existing heterogeneity around service kinds and annotation
formalisms. In particular iServe:

– supports importing service annotations in a range of formalisms (e.g., SAWSDL,
WSMO-Lite, MicroWSMO) that cover both WSDL services and Web APIs;

– provides means for publishing semantic annotations of services which are
automatically assigned a resolvable HTTP URI;

– includes support for content negotiation so that service annotations can be
returned in HTML for human users, or in RDF for machine interpretation;

– provides a SPARQL endpoint allowing advanced querying over the services
annotations;

– offers a read/write REST API so that services can easily be retrieved and
published from remote applications; and

– automatically generates links between the published service annotations and
additional documents on the Web such as the original service description
or documentation so that users and machines can easily discover more
information.

The architecture of iServe, depicted in Figure 1, comprises a crawler, a RESTful
API, a set of import mechanisms, and an RDF store. The crawler collects existing
annotations from the Web in order to publish them in iServe. Given that not
many annotations are published on the Web, the crawler currently deals only with
known sets of service annotations such as the SAWSDL retrieval test collection
(SAWSDL-TC)2 and the OWL-S retrieval test collection (OWLS-TC)3. The
RESTful API, implemented using Restlet4, provides operations for accessing
service annotations and service documentation, allowing remote applications
to publish and discover services. The import mechanisms provide support for
importing annotations in diverse formalisms by transforming them into the
Minimal Service Model, explained in more detail below, which is used by iServe for
publishing them as linked data. This service model provides a common vocabulary
for service annotations, smoothing away the heterogeneity of different formalisms
such as OWL-S, SAWSDL and WSMO, allowing humans and machines to discover
service annotations originally described using heterogeneous conceptual models
through a single vocabulary. Finally, iServe captures the service annotations
together with some provenance information including the annotation author and
the creation or modification date in an RDF store. RDF storage and querying
support is provided by Swift OWLIM,5 although it is accessed via RDF2Go6

to maintain independence with respect to the concrete store used. The RDF

2 See http://www.semwebcentral.org/projects/sawsdl-tc/
3 See http://www.semwebcentral.org/projects/owls-tc/
4 See http://www.restlet.org/
5 See http://www.ontotext.com/owlim/
6 See http://semanticweb.org/wiki/RDF2Go

71

store provides us with a SPARQL endpoint that is made available to external
applications in order to interact with iServe for retrieving services.

Fig. 1. The overall architecture of iServe.

3.2 Conceptual Models

Section 2 covered the state of the art around the publication of services and
semantic annotations, highlighting the existing heterogeneity in terms of languages
and formalisms used, the main approaches adopted thus far for publishing and
discovering services, and the need of finding a trade-off between expressivity of
service descriptions and their complexity. In building a system like iServe it is
necessary to provide a common vocabulary, able to describe services in a way
that allows machines to automatically locate and filter services according to their
functionality or the data they handle, independent of the formalism originally
used to describing them.

The best-known approaches to annotating services semantically are OWL-S,
WSMO, SAWSDL, and WSMO-Lite for WSDL services, and MicroWSMO,
and SA-REST for Web APIs. To cater for interoperability, iServe uses what

72

can essentially be considered the largest common denominator between these
formalisms which we refer to as the Minimal Service Model (MSM). The MSM,
first introduced together with WSMO-Lite [15], is a simple RDF(S) ontology
able to capture the core semantics of both Web services and Web APIs in a
common model supporting the common publishing and search of services, yet
still permitting framework-specific extensions to remain attached and thereby
benefitting those clients able to comprehend those formalisms.

The MSM, denoted by the msm namespace in Figure 2, defines Services
which have a number of Operations. Operations in turn have input and output
MessageContent descriptions, and Faults. A MessageContent may be composed
of MessageParts which can be mandatory or optional. The addition of message
parts extends the earlier definition of the MSM as described in [15]. The intent of
the message part mechanism is to support finer-grain discovery based on message
parts, mirroring the granularity of SAWSDL and allowing to distinguish between
mandatory and optional parts.

Fig. 2. Conceptual model for services used by iServe.

iServe also uses the SAWSDL, WSMO-Lite and hRESTS vocabularies, de-
picted in the figure with the sawsdl, wl, and rest namespaces respectively.
The SAWSDL vocabulary captures in RDF the three kinds of annotations over
WSDL and XML Schema, namely modelReference, liftingSchemaMapping and
loweringSchemaMapping that SAWSDL supports. SAWSDL supports the anno-
tation of WSDL and XML Schema syntactic service descriptions with semantic
concepts, but does not specify a particular representation language nor does it
provide any specific vocabulary that users should adopt. The modelReference

73

property links syntactic service elements to semantic models via URIs, while
the schema mapping properties indicate data transformations from a syntactic
representation to its semantic counterpart and vice versa.

WSMO-Lite builds upon SAWSDL by extending it with a model specifying
the semantics of the particular service annotations. It provides a simple RDFS on-
tology together with a methodology for expressing functional and non-functional
semantics, and an information model for WSDL services based on SAWSDLs
modelReference hooks. In particular, WSMO-Lite makes explicit the intended
meaning for modelReference annotations without modifying SAWSDL. Instead,
it provides a vocabulary to annotate the URIs pointed to by SAWSDL annotations.
The WSMO-Lite vocabulary includes the classes NonFunctionalParameter,
FunctionalClassificationRoot, Condition, Effect and Ontology. With these,
an annotator can type SAWSDL annotation references without adding informa-
tion directly to the WSDL description.

The hRESTS vocabulary [22] extends the MSM with specific attributes for
operations to model information particular to Web APIs, such as a URITemplate

to describe the URI for invocation, and method to indicate the HTTP method
used for the invocation. For methods, iServe uses the draft W3C HTTP in RDF
vocabulary [23].

4 An Open Publishing Platform

The fundamental objective pursued by iServe is to provide a platform able to
publish service annotations in a way that would allow people to achieve a certain
level of expressivity and refinement in discovering services, while remaining simple
and convenient both for human and machine use. The simple conceptual model
explained earlier is a principal building block to support this as a general model
able to abstract away the existing conceptual heterogeneity among service anno-
tation approaches without introducing considerable complexity from a knowledge
acquisition and computation perspectives. Thanks to its simplicity, the MSM
captures the essence of services in a way that can support service matchmaking
and invocation and still remains largely compatible with the RDF mapping
of WSDL [24], with WSMO-based descriptions of Web services, with OWL-S
services, and with services annotated according to WSMO-Lite and MicroWSMO.
Although providing a formal mapping for each of these languages is out of the
scope of this paper, we note that the elements captured in the MSM are largely
common to existing models. The mapping is not lossless, but appropriate use of
rdfs:isDefinedBy, covered next, can help circumvent this limitation and still
provide a common ground for publishing Linked Services in the Web of Data
in a way that is amenable to automated processing and where more expressive
definitions can be linked if needed.

iServe provides a set of import mechanisms that can take service annotations in
several formats, and generate the appropriate RDF in terms of iServe’s conceptual
model. In particular, the current version can import SAWSDL, WSMO-Lite,
MicroWSMO, and part of OWL-S descriptions. The import process generates

74

rdf:isDefinedBy links from the service annotation to the original description file
(e.g., the WSDL including the annotations), rdf:seeAlso to any documentation
about the service (e.g., the Web API description page itself), and owl:sameAs

relations to the published version of the same service annotation in other systems.
Currently, the only owl:sameAs links that are generated link to the RDF mapping
of WSDL [24], ensuring compatibility with tools using it, but in the future, other
links could be generated to connect services stored in other repositories adopting
principles similar to iServe’s.

In addition to the import mechanisms that provide compatibility and abstract
away the heterogeneity in service description formalisms, iServe contributes to
publishing services on the Web by automatically hosting service descriptions at
a publicly accessible URI, and by offering means for users or machines to upload
service annotations through its RESTful API7.

iServe is integrated with two service annotation editors being developed within
the SOA4All project: SWEET [25] (SemanticWeb sErvices Editing Tool) and
SOWER (SWEET is nOt a Wsdl EditoR), which support users in annotating
Web APIs and WSDL services respectively.8 Both editors are Web applications
that can directly be used with a Web browser and provide support for browsing
service descriptions and annotating them through a simple interface. Behind
the scenes, both editors take care of serialising the descriptions according to
MicroWSMO (SWEET) and WSMO-Lite (SOWER) specifications respectively.
Both editors strive to assist users in creating service annotations through two
main means: the use of the Web as background knowledge and a direct connection
with iServe for the seamless persistence and publication of annotations.

A fundamental part of service annotation concerns the linking of (parts of)
service descriptions to ontologies capturing semantically the data model they
handle, certain non-functional properties such as the quality of service and price,
and their categorisation with respect to reference taxonomies and classifications
of services. Thus far, the authoring of service annotations has essentially been
based on the manual creation of both the services’ structure and the actual
ontologies used in their annotation. Consequently, creating service annotations
has been a particularly tedious task which rather than better supporting the
integration of services has led instead to additional heterogeneity at the semantic
level. Further limitations have also traditionally been brought by the fact that
the service annotations and the ontologies used were most often not published
publicly which impedes the interpretation and use of services by third-parties.

SWEET and SOWER support the integrated search of suitable domain
ontologies by means of Watson [6]. Watson serves as a gateway for the Semantic
Web by collecting the available semantic content on the Web, analyzing it to
extract useful metadata and generate indexes, and implementing efficient query
facilities to access the semantic data. During the annotation of services, Watson
supports retrieving ontologies and concepts matching particular keywords. In this
way, a user can select a service property and receive a list of semantic entities

7 More details about the API can be found at http://iserve.kmi.open.ac.uk
8 A publically accessible SWEET instance is available at http://sweet.kmi.open.ac.uk.

75

suitable for the annotation thus potentially reducing the manual labour involved
through reuse (Figure 3). Integrating the editors with systems like Watson gives
annotators better access to semantic vocabulary, hopefully leading to descriptions
that are both more precise, and more widely understood by dint of being found on
the Web and reused rather than invented on an ad-hoc basis, thereby embedding
service descriptions in the existing Web of linked data.

Fig. 3. SWEET showing possible annotations based on Watson results.

5 Conclusions and Future Work

Despite the potential of service technologies and the efforts devoted so far, we
have yet to witness a significant uptake of service technologies outside enterprise
environments. There is a tension between the rich descriptions necessary to
automate much of the use of services, and the reticence on the part of developers
to invest that effort. A similar situation exists in Semantic Web Services, where
the expressive models able to capture the semantics of services stand in contrast
to the lightweight tagging approaches that appear more acceptable to users.

In this paper we described iServe, a novel and open platform for publishing
services that aims to better support their discovery and use by exposing them
as linked data expressed in terms of a simple vocabulary for services. This
vocabulary provides a common ground for descriptions of different flavours of
Web services (SOAP services described in WSDL, and RESTful services described
in hRESTS), and several kinds of semantic formalisms (including OWL-S, WSMO,
and WSMO-Lite). iServe is underpinned by principles we believe are applicable

76

to generic repositories of semantic information. These principles include the
application of linked data principles to publish metadata about the content,
the automated publication of the actual content at a public URI if necessary,
the adoption of a simple vocabulary able to abstract away the heterogeneous
vocabularies or formalisms used by other repositories within the domain, and the
provisioning of an open API allowing applications to automatically retrieve and
publish information.

Additionally in this paper we have shown how the advent of engines like
Watson that support searching for ontological entities over the Web has enabled a
new way for authoring semantic models which as we have seen can also contribute
to authoring service annotations by reducing the amount of effort required and
potentially contributing to reducing integration issues through ontology reuse.

Future work on iServe will focus on the development and refinement of
import mechanisms for WSMO and OWL-S, the creation of advanced indexing
mechanisms, and capturing non-functional information about services gleaned at
runtime from the monitoring infrastructure. Future work on the editor side will
focus on better assisting users in the creation of annotations.

Acknowledgements This work was partly funded by the EU project SOA4All
(FP7-215219). We thank all the members of the SOA4All project and the Con-
ceptual Models for Services Working Group of STI International. We also thank
Pierre Grenon for his insightful comments and Alex Simov for the development
of SOWER.

References

1. Erl, T.: SOA Principles of Service Design. The Prentice Hall Service-Oriented
Computing Series. Prentice Hall (July 2007)

2. Davies, J., Domingue, J., Pedrinaci, C., Fensel, D., Gonzalez-Cabero, R., Potter,
M., Richardson, M., Stincic, S.: Towards the open service web. BT Technology
Journal 26(2) (2009)

3. Pilioura, T., Tsalgatidou, A.: Unified publication and discovery of semantic web
services. ACM Trans. Web 3(3) (2009) 1–44

4. McIlraith, S., Son, T., Zeng, H.: Semantic web services. IEEE Intelligent Systems
16(2) (March 2001) 46–53

5. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS) (2009)

6. d’Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez, V., Guidi,
D.: Toward a new generation of semantic web applications. IEEE Intelligent
Systems 23(3) (2008) 20–28

7. Clement, L., Hately, A., von Riegen T. Rogers, C.: UDDI Specification Version
3.0.2. Technical report, OASIS (2004)

8. Stollberg, M.: Scalable Semantic Web Service Discovery for Goal-driven Service-
Oriented Architectures. PhD thesis, Faculty of Mathematics, Computer Science
and Physics Leopold-Franzens University Innsbruck, Austria (March 2008)

9. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web.
In: WWW ’08: Proceeding of the 17th international conference on World Wide
Web, New York, NY, USA, ACM (2008) 795–804

77

10. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc. (May 2007)
11. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted

classification based approach to search and rank Web APIs. In: ICWS ’08: Pro-
ceedings of the 2008 IEEE International Conference on Web Services, Washington,
DC, USA, IEEE Computer Society (2008) 177–184

12. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services: The Web Service Modeling
Ontology. Springer (2007)

13. Martin, D., Burstein, M., J., H., Lassila, O., McDermott, D., McIlraith, S., Paolucci,
M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Semantic
Markup for Web Services. http://www.daml.org/services/owl-s/1.0/owl-s.pdf (2004)

14. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema.
http://www.w3.org/TR/sawsdl/ (January 2007) W3C Candidate Recommendation
26 January 2007.

15. Vitvar, T., Kopecky, J., Viskova, J., Fensel, D.: WSMO-Lite annotations for web
services. In Hauswirth, M., Koubarakis, M., Bechhofer, S., eds.: Proceedings of
the 5th European Semantic Web Conference. LNCS, Berlin, Heidelberg, Springer
Verlag (June 2008)

16. Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically interoperable and
easier-to-use services and mashups. IEEE Internet Computing 11(6) (2007) 91–94

17. Maleshkova, M., Kopecký, J., Pedrinaci, C.: Adapting SAWSDL for semantic
annotations of restful services. In: Workshop: Beyond SAWSDL at OnTheMove
Federated Conferences & Workshops. (2009)

18. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery,
interaction and composition of semantic web services. Web Semantics: Science,
Services and Agents on the World Wide Web 1(1) (2003) 27 – 46

19. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
OWLS-MX. In: AAMAS ’06: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, New York, NY, USA, ACM (2006)
915–922

20. Stollberg, M., Hepp, M., Hoffmann, J.: A caching mechanism for semantic web
service discovery. In: 6th International and 2nd Asian Semantic Web Conference
(ISWC2007+ASWC2007). (November 2007) 477–490

21. Küster, U., König-Ries, B.: Towards standard test collections for the empirical
evaluation of semantic web service approaches. Int. J. Semantic Computing 2(3)
(2008) 381–402

22. Kopecky, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for
Describing RESTful Web Services. In: The 2008 IEEE/WIC/ACM International
Conference on Web Intelligence (WI2008), Sydney, Australia, IEEE CS Press
(November 2008)

23. Koch, J., Velasco, C.A.: HTTP vocabulary in RDF 1.0. Working draft, W3C
(October 2009)

24. Kopecký, J.: Web services description language (WSDL) version 2.0: RDF mapping.
Working group note, W3C (June 2007)

25. Maleshkova, M., Pedrinaci, C., Domingue, J.: Supporting the creation of semantic
RESTful service descriptions. In: Workshop: Service Matchmaking and Resource Re-
trieval in the Semantic Web (SMR2) at 8th International Semantic Web Conference.
(2009)

78

Context-aware access to ontologies on the Web

Patrick Maué1, Alejandro Llaves Arellano1, and Thore Fechner1

Institute for Geoinformatics (ifgi), University of Muenster, Germany
patrick.maue|alejandro.llaves|thore.fechner@uni-muenster.de

Abstract. Domain vocabularies capture the ontology engineer’s context-
specific perspective on reality. Existing solutions for serving such on-
tologies often lack intuitive means to avoid conflicts due to logically
inconsistent concept descriptions. In addition, no efficient and simple
techniques for selecting only relevant terms from extensive vocabularies
exist. We present an implementation of a concept repository which shifts
the focus from ontologies towards individual concept descriptions. The
description’s identity is defined by its title and an optional set of sub-
jects. We introduce the notion of profiling concept descriptions to distin-
guish between context-independent and context-specific (and potentially
conflicting) properties. A flexible approach for constructing the concept
identifiers supports context-aware access. Furthermore, an extensible set
of query actions allows for retrieving certain parts of ontologies, e.g. the
neighbourhood of one particular concept or all concepts associated with
a certain subject. We illustrate the findings with an implementation of
an ontology repository.

1 Introduction

Integrating information across domains relies on a consistent interpretation of
the underlying data models. Such semantic interoperability depends on mappings
between different domain-specific vocabularies[1]. Ontologies are commonly used
to formally represent such vocabularies. Aligning these ontologies to upper-level
ontologies , or creating rules mapping between potentially conflicting domain
ontologies [2], ensures integration without losing domain-characteristic features.
Reasoning engines use the alignments to infer matching conceptualisations. This
long-term vision of semantic interoperability across information communities is
based, amongst others, on the assumption that:

(a) all domain ontologies are published on the Web. The ontology elements are
resources with an identity, and are accessible [3] via unique and resolvable
identifiers. Such Uniform Resource Locators (URL) are required for relating
local application-specific schema to terms in shared vocabularies, and let
reasoners retrieve the descriptions from the Web [4].

(b) the relationships between ontology elements are consistent and valid. URLs
used by relations referring to external terms have to be accessible and return
a valid resource.

79

2

(c) elements in local application schema are referenced to shared vocabularies
using semantic annotations [5].

Ontologies are traditionally implemented as downloadable files encoded in
one particular ontology language. Scope and encoding are defined by the ontol-
ogy engineer, the ontology’s content is usually static. Even though this approach
complies to the assumptions (a) and, if performed carefully, also (b), it poses
a great problem for (c). Only few examples of accessible and actively re-used
ontologies exist. These are usually abstract and thematically narrow proposals
such as FOAF [6] for modelling social networks. Published domain-specific on-
tologies, e.g. the SWEET ontologies for Earth science [7], are either only partially
re-used or heavily adapted to local needs. Reasons for this are, amongst others:
they are too extensive, which impairs navigation and understanding. They are
too limited in scope. They are biased and don’t capture the shared consensus
of different domain experts. They are not maintained and therefore not rep-
resenting the current state of knowledge. Or they are inconsistent, linking to
remote, but non-existent resources. The implementation of the concept reposi-
tory (CORE) addresses the first three issues, with the potential to also target
the last two. An in-depth discussion of basic principles for re-usable ontologies
can be found in [8]. Using mature methodologies for ontology engineering [9] can
help to avoid some of the issues which we encountered during the creation of the
domain ontologies.

We understand an ontology as loose collection of related concepts. The notion
of related is deliberately underspecified: it depends on the client’s context which
particular representation of an existing vocabulary is considered suitable. We
discuss the idea of profiling concepts to support conceptualizations conflicting
with common sense. This phenomena appears not only in-between different in-
formation communities, but also between experts of the same domain. Profiling
allows for individual interpretations without losing consistency with the under-
lying ontology. The presentation of a conceptually simple approach to realize
profiling for concept descriptions is the main contribution of this paper.

Profiling supports context-sensitive ontology modularization, and various re-
lated work on this subject exists. Most research is focussing on the formal def-
inition of modules in ontologies [10, 11], with focus on describing how to define
(and how to separate) modules. In [12], the authors introduce a formal way to
link the different modules. D’Aquin et al. [13] discuss different aspects ontol-
ogy modularization methods have to consider (and can be evaluated against).
According to [14], the following three approaches for ontology modularization
exist: (1) Query-based methods, (2) Network partitioning, and (3) Extraction
by traversal. Their segmentation approach for large-scale ontologies is based on
the traversal in the ontology graph. The same is true for the implementation
presented here.

The following section 2 lists the reasons explaining why we implemented
our own version of an ontology repository, and why existing solutions did not
meet our requirements. This section will also introduce a use case which acts
as a running example for the remainder. In section 3 we discuss our approach

80

3

and accordingly the implementation. We introduce the concept of profiling and
addressing concepts and how to select relevant collections of concepts in the
repository. We conclude the paper with a short evaluation and a summary.

2 Creating and sharing vocabularies on the Web

Authoring sophisticated ontologies in collaboration with domain experts, and
making the results accessible on the Web, is only a first step. The active use
of these ontologies by other parties (ideally from a different information com-
munity) is also needed to enable integration across information communities.
Several issues have to be considered to not only complete the first, but also the
second phase. In the following section we discuss our experience in knowledge
acquisition and ontology engineering, and list the problems encountered which
eventually resulted in the implementation of CORE.

2.1 Building Domain Ontologies

Deciding if one particular site may be a suitable location for quarrying mineral
resources relies on a variety of criteria. The acquisition, analysis, and presenta-
tion of potentially relevant information guiding the decision maker has been the
subject of the research project SWING1. The relevant information is served by
Web services which have been semantically annotated with domain ontologies.
The whole process (discovery,pre-processing, and rendering) has been imple-
mented as a workflow. Such Web service compositions were also the focus of the
GDI-Grid2 project. Here, ontologies are used for the semantic validation of the
Web service workflows. In SWING we mainly focused on interviews with domain
experts like geologists to capture the relevant concepts and their properties [15].
The result of the conceptual phase [9] were extensive concept maps representing
the core concepts which had to be implemented in the ontologies. Figure 1 de-
picts a small excerpt of one concept map. Graphical tools for authoring concept
maps ship with two interesting features: Colour has been used to organize the
concepts which belong to the same domain. The concept’s spatial distribution
is particular useful to group those which are in some way related (without the
need to explicitly associate them with a domain using colour). Unfortunately,
colour and location can not be directly re-used for the implementation of the
concept maps as ontologies.

Figure 1 represents the engineer’s view of the concept River. For comput-
ing the river’s discharge (the product of the stream velocity and cross-sectional
area), environmental models for flood prediction make use of information about
the underlying terrain and observations coming from sensors. Computing the
cross-sectional area relies on detailed information about the Depth of the river.
In the remainder of this paper, we are using this particular quality as a running

1 Project results and videos are available at http://www.swing-project.org/
2 On-going project, more information available at http://www.gdi-grid.de/

81

4

Fig. 1. An excerpt of a concept map

example to explain the idea of domain-independent conceptualizations. The cap-
tain steering a vessel through the river has one particular view on the river’s
depth. He is only concerned about the minimum depth of the official water way.
The biologist may be more interested in maximum freezing depth, which allows
for modelling the winter conditions for the fish population. In the next section
we discuss the problems encountered when we realized that we have to integrate
such different perspectives into the domain ontologies.

2.2 Conflicting Conceptualizations

The results of the knowledge acquisition where captured using either tools for
building concept maps or by writing protocols of the discussions with the do-
main experts. For implementation, these intermediate, sometimes inconsistent,
and rather informal models had to be transformed into formal ontologies. The
problems described in this section have been the motivation for the implemen-
tation of the concept repository.

Until now, a concept has been merely described is by a name and relations
to other concepts. Ontologies are meant to serve as formal specifications which
explicitly describe the concept. These concept descriptions comprise a name,
properties (including relations to other concepts), and additionally axiomatic
statements which further constrain the properties. If an ontology is lacking ambi-
guities, e.g. due to homonyms, naming is not necessarily an issue. Hence, re-using
the concept’s name as part of its identifier is a common approach suitable for
simple ontology building tasks. Since we refer to RDF-encoded ontologies shared
on the Web, an identifier is implemented as Internationalized Resource Identi-
fier (IRI). An IRI comprises a namespace and a local name. Concepts are often
defined through other concepts: a concept description for river may be identified
using the term “River”, the river’s depth as “RiverDepth”, and one particular
conceptualization even as “MinimumRiverDepth”. This approach does not scale
well for extensive ontologies, and eventually results in arbitrarily chosen local
names which do not reflect the actual name of the concept. This becomes even
more apparent if multiple names in different languages are to be supported for

82

5

one concept. By decoupling the identifier’s local name from the concept’s name,
ontologies can support different descriptions with similar names, as well as de-
scriptions with different names. Within CORE, the concept descriptions have
automatically generated local names and one common namespace. We make use
of Dublin Core [16] metadata properties - in this case dc:title for the concept
name - to model the identity of a concept description.

The problem of finding appropriate identifiers becomes more apparent if two
concept descriptions within the same namespace (which means, the same ontol-
ogy) describe the same concept. Figure 2 comprises two examples for a descrip-
tion of the concept River using the Manchester Syntax [17] of the Web Ontology
Language (OWL).

Example 1 (Captain’s Perspective).

Class: River

Annotations:

dc:title "River"

ObjectProperty: has-depth

Annotations:

dc:title "has depth"

Domain:

River

Range:

minimum-depth

Class: minimum-depth

Annotations:

dc:title "minimum depth"

Example 2 (Biologist’s Perspective).

Class: River

Annotations:

dc:title "River"

ObjectProperty: has-depth

Annotations:

dc:title "has depth"

Domain:

River

Range:

maximum-freezing-depth

Class: maximum-freezing-depth

Annotations:

dc:title "maximum freezing depth"

Fig. 2. Two different conceptualisation of river depth.

Depending on the context, either of these two descriptions can be considered
to be valid. Both share an identical extension since they refer to the same real
world concept. The captain’s understanding of River may differ from the biol-
ogist’s, but both use the same term to refer to it. Hence, even though concept
descriptions have conflicting properties, their names are identical. Modulariza-
tion – splitting the ontology up into modules with different namespaces – may
provide a solution for conflicting concept descriptions. During the implementa-
tion we regularly dealt with concepts whose context were not clearly defined.
Such border-line cases can not be clearly associated with one particular domain.
The need for modularization forces the ontology engineer to also explicitly assign
context to concepts which are either context-free or belong to multiple domains.
The maximum-freezing-depth of a river may be important in the scope of a Bi-
ology domain ontology, but is obviously also related to Hydrology. The concept
Depth itself is domain-independent. Adding such concepts to one specific domain

83

6

ontology strengthens the association to the domain, but also impairs re-usability
in other contexts. During implementation we decided to interpret modularization
differently: ontologies are no longer collections of concepts manually compiled by
the ontology engineer. Ontology membership is simply a property itself. Every
concept description may be defined to be part of multiple ontologies, and mem-
bership can change dynamically. Similarly to the concept’s name, we use of the
dc:subject property to express a concept’s membership in a certain domain.

In SWING, the individual modules represented only a small excerpt of the
needed vocabulary, and the aggregated graph was much too extensive for the
visualization. Sophisticated query techniques for RDF-based vocabularies exist,
but relying on such complex solutions impedes re-usability for generic clients. It
would then be the client’s responsibility to (a) study the ontology to learn how to
formulate the query and (b) execute queries where in fact only one URL should
be required for selecting the relevant collection of concepts. It should be possible
to construct URLs which not only uniquely identify concept descriptions, but
also allow for selecting collections of concept descriptions which are in some sense
related and therefore important to the client. descriptions are only valid within
a one particular domain, since there exists another conflicting description. In
our case, the concept River may be modelled to have a quality ”‘depth”’, which
is commonly understood as the average depth measured by a gauge.

2.3 A first implementation

Existing solutions like the Tones Ontology Repository3, Oyster4, or Pronto5 are
focused on the ontologies as a subjects of interest, not the individual concept
descriptions. A first implementation of CORE was released in late 2008 for the
SWING project [18]. Only some of the features discussed in this paper have
been realized in this version. In fact, most requirements were identified during
its implementation and use.dc:title labels the concepts, and the concatenated
language tag, e.g. “@en”, marks different languages. The namespace defines
the scope of the needed ontology. For example, the URL “http://.../core/GDI-
Grid/” has been used to request all concepts associated with the “GDI-Grid”
domain. The URL “http://.../core/Acoustics/GDI-Grid/” retrieves an intersec-
tion of two domains: the result is a list of concepts which have been defined valid
for both domains.

The focus on using namespaces for defining scope had one major drawback.
Managing the import of namespaces for local ontologies became a tedious task,
since nearly every concept description was defined in a different scope. Addi-
tionally, the separation between listing all the concepts in one context (only the
namespace is used as the URL) and concept description was not accepted by the

3 See: http://owl.cs.manchester.ac.uk/repository/
4 See: http://oyster.ontoware.org/
5 See: http://metadata.net/sfprojects/pronto.htm

84

7

users. Hence, a new implementation of the concept repository6 was initiated,
which is currently in active development.

3 Solutions

In the following section, we introduce some suggestions to overcome the en-
countered problems. These includes the notion of profiling concepts to model
the domain-specific perspective without breaking the relation to the original
concepts, a solution for selecting subsets of concepts which may be relevant ac-
cording to certain criteria, and the idea of regular consistency checks for the
relationships between concepts.

3.1 Profiling concepts

The example of Figure 2 listed two valid, but conceptually inconsistent, descrip-
tions for the concept River. Following Guarino, we consider a concept descrip-
tion (and its associated ontology) to be a “logical theory which gives an explicit,
partial account of a conceptualization” [19]. The ontology engineer’s subjective
view on reality can only result in a partial description. Different perspectives on
one concept may result in diverging and sometimes conflicting descriptions. The
object’s identity criteria are defined through its characteristic properties [20].

Profiling concepts supports different viewpoints on concepts within one on-
tology. It allows for refining and extending conceptual structures, without losing
the applicability of the underlying model [21]. One profile7 concretises another
concept description. The concept itself is always domain-independent; the same
is true for characteristic properties. The profile extends (and therefore concre-
tises) a domain-independent description by either refining existing or adding
new properties. Profiling is not inheritance. Both, source and profiled concept
description, refer to the same concept. Both have an identical extension. All in-
stances of River are also instance of River (Biology). But only some instances
of River can be considered to also be a Creek (which is modelled as sub-class of
River) A profile specifies one particular viewpoint on a concept, but it does not
affect its extension. Accordingly, both share the same name for identification.

Figure 3 illustrates how River has been refined to reflect the biologist’s per-
spective. It also shows how concept descriptions are stored within the reposi-
tory. During import, the identifiers are automatically generated (as hexadecimal
codes) from the title and, if existing, the subject. A concept is profiled by spec-
ifying that a property is only valid within a certain context, i.e., a dc:subject

annotation is added. An existing property is refined by additionally re-using the
source property’s dc:title-annotation and changing the property’s range. In the

6 This time as part of an open source project. More information is available at
http://purl.org/net/sapience/docs/. All source code is publicly accessible via the
subversion repository.

7 The idea of “profiling” is commonly used in the standards communities to explain
if one standard is concretising another.

85

8

Class: 26c623af

Annotations:

dc:title "River"

rdfs:seeAlso River_Biology

SubClassOf:

geo:geographic-object

DatatypeProperty: 1a50ca0c

Annotations:

dc:title "has depth"

Domain:

26c623af

Range:

double

Class: 618c2089

Annotations:

dc:title "River"

dc:subject "Biology"

ObjectProperty: addac6d

Annotations:

dc:title "has depth"

dc:subject "Biology"

Domain:

618c2089

Range:

d1ce83e7

Class: d1ce83e7

Annotations:

dc:title "maximum freezing depth"

dc:subject "Biology"

Fig. 3. The concept River (left) and the profiled concept River (Biology) (right)

figure, the domain-independent concept description includes the property “has
Depth” with a literal as its range. The range of this property has been changed
and refers to the “maximum freezing depth” for the profiled concept. The on-
tology engineer is responsible for creating the profiled concept River (Biology),
adapting the properties, and adding a rdfs:seeAlso annotation to link the orig-
inal concept description to the new profiling description. We already mentioned
that semantic heterogeneities may not only exist between different information
communities, but already within one community, or even within one organiza-
tion. Profiles can again be source descriptions for other profiles. The transitive
nature of profiling enables individual conceptualizations at all levels, with the
option to trace the profiles back to the original source. Users are then able to
navigate to the profiled concept descriptions if needed. In the following section
we explain how to retrieve the concept descriptions either for River (without the
refined properties) or River (Biology) (the value of the rdfs:seeAlso annotation
in the figure).

3.2 Accessing concepts

Internally, all concept descriptions have automatically generated local names
which are used for identification. The concept’s identity, on the other hand,
is defined by its title and subject. Title and subject can be defined in various
ways in the URL. The expressions River Biology, /subject/Biology/River,
River?subject=Biology and /describe?title=River&subject=Biology all
identify the same concept description. Only one context can be specified in the
URL. The first three examples are internally transformed into the fourth. In the
end, the query task (see section 3.3) describe is triggered with the parameters

86

9

title and subject. The result of this query is the concept description listed in
figure 4. The resulting RDF is formatted according to the requested URL. As
suggested in [22], the concept description’s identifier is always the request URL.
The style of the other resource identifiers in the concept description, e.g. for
the properties, is equivalent to the style of the request URL. If a concept de-
scription with the given parameters does not exist, the result is either a redirec-
tion (HTTP Response Code 303) to the potentially correct concept description
(e.g. if a non-existent domain-dependent concept is requested, a redirect to the
domain-independent description is returned) or an exception (HTTP Response
Code 404).

Class: River_Biology

Annotations:

dc:title "River"

dc:subject "Biology"

ObjectProperty: has-depth_Biology

Annotations:

dc:title "has depth"

Domain:

River_Biology

Range:

maximum-freezing-depth

Fig. 4. Result for the URL “http://.../rdf/River Biology”

3.3 Accessing ontologies

An ontology is a collection of related concepts descriptions. Depending on the
user’s need, the type of the relevant relation may differ. In most cases, though,
she might be interested in all concepts associated with one domain, e.g. Biology
or Hydrology. Which specific collection, and therefore ontology, is returned by
CORE depends on the ontology identifier. As when accessing a concept descrip-
tion, the access to an ontology is defined by the URL parameter. For example,
the query action describe returns a concept description matching the given query
parameters title and subject. We distinguish between query and update actions.
The first triggers a SPARQL [23] query to the internal RDF repository (based on
Sesame [24]), and optionally transforms the result. The latter is used to upload
ontologies into the repository. We have developed the query tasks all and neigh-
bors for CORE. The neighbourhood of one particular concept comprises all other
concepts which are directly related to the query concept via its properties. If the
optional depth-parameter is specified, the properties of the related concepts are
considered as well. The all-action returns all concept descriptions which have
the given subject-parameter defined as their domain. As for the describe-action,

87

10

all actions support the encoding either in the URL’s path (RESTful approach),
or in the query fragment. Figure 5 shows three equivalent URLs to return all
concepts within the domain Biology.

(1) http://.../rdf/Biology/

(2) http://.../rdf/subject/Biology/

(3) http://.../rdf/all?subject=Biology

Fig. 5. Constructing the Ontology identifier.

The idea of query actions is not constrained to the two introduced actions.
The action is-similar could return similar (but not explicitly related) concepts,
the action has-property may query for all concepts with the given property. Even
though we’ve implemented CORE as a repository for ontologies, it might also be
deployed for other RDF-based vocabularies. Using it, for example, as a gazetteer
would require query actions supporting spatial queries like contains, which runs
not only a SPARQL query, but also performs spatial filtering.

4 Evaluation

The first version of the concept repository has been evaluated in two research
projects. The new features discussed here were implemented and tested (using
module tests), and will be released in the next version. It is deployed as soft-
ware as a service using the Google infrastructure, which addresses issues such
as scalability, performance, and sustainability [25]. Scalability for RDF reposi-
tories is primarily concerned about performance of handling very large numbers
of triples. Since reducing the amount of retrieved ontology elements has been
the objective of CORE, scalability regarding the extent of the ontologies was
not investigated. Other open issues, i.e. the scalability of the profiling approach,
have to be tested in a long-term evaluation, which is planned in the just started
research project ENVISION (http://www.envision-project.eu).

5 Conclusion

Language independence has always been one of the key requirements. The on-
tologies in SWING and GDI-Grid were implemented using the Web Service
Modeling Language WSML8. Support for the more popular OWL Web Ontology
Language has been identified as a requirement as well. CORE is not restricted
to one particular ontology language, but requires an RDF-encoding. CORE is a
sophisticated solution to access resources in an RDF repository.

8 More information available at: http://www.wsmo.org/wsml/

88

11

In this paper, we presented an implementation of an ontology repository. We
discussed why ontologies published on the Web are rarely re-used in semantically
enriched applications, and listed the problems we encountered during knowledge
acquisition and ontology engineering. Our proposal to facilitate the use of ex-
isting shared vocabularies included the following recommendations: profiling of
concepts supports adaptation of existing domain concepts to local needs, without
losing the alignment to the underlying domain ontology. A RESTful approach
to access the shared vocabularies simplified local integration. Domain-specific
information can simply be encoded in the URL used to identify a concept. Con-
tinuously running consistency checks test the relationships within the ontologies
to ensure valid connections. If we are able to facilitate re-usability of existing
shared vocabularies, the envisioned semantic integration of data across informa-
tion communities may become reality. We believe the presented implementation
of the concept repository CORE can contribute to this vision.

6 Acknowledgments

The presented research has been funded by the BMBF project GDI-Grid (BMBF
01IG07012) and the European projects SWING (FP6-026514) and ENVISION (FP7-
249120).

References

1. Kuhn, W.: Geospatial Semantics: Why, of What, and How? Journal on Data
Semantics III 3534 (2005) 1–24

2. Maué, P., Ortmann, J.: Getting across information communities. Earth Science
Informatics 2 (2009) 217–233

3. Hayes, P.J., Halpin, H.: In Defense of Ambiguity. International Journal on Seman-
tic Web & Information Systems 4 (2008) 1–18

4. Berrueta, D., Phipps, J., Miles, A., Baker, T., Swick, R.: Best Practice Recipes
for Publishing RDF Vocabularies (2008)

5. Handschuh, S., Staab, S.: Annotation for the Semantic Web (Frontiers in Artificial
Intelligence and Applications). IOS Press (2003)

6. Graves, M., Constabaris, A., Brickley, D.: FOAF: Connecting People on the Se-
mantic Web. Cataloging & classification quarterly 43 (2007) 191–202

7. Raskin, R., Pan, M.: Knowledge representation in the semantic web for Earth
and environmental terminology (SWEET). Computers & Geosciences 31 (2005)
1119–1125

8. Smith, B.: Against Idiosyncrasy in Ontology Development. In: Proceeding of the
2006 conference on Formal Ontology in Information Systems, Amsterdam, The
Netherlands, The Netherlands, IOS Press (2006) 15–26

9. Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering :
with examples from the areas of Knowledge Management, e-Commerce and the
Semantic Web. First Edition (Advanced Information and Knowledge Processing).
Springer (2004)

10. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
theory and practice. J. Artif. Int. Res. 31 (2008) 273–318

89

12

11. Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and web ontologies.
In: In Proc. KR-2006. (2006) 198–209

12. Bao, J., Caragea, D., Honavar, V.: On the semantics of linking and importing in
modular ontologies. In: The Semantic Web - ISWC 2006. (2006) 72–86

13. d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Ontology modulariza-
tion for knowledge selection: Experiments and evaluations. In Wagner, R., Revell,
N., Pernul, G., eds.: Database and Expert Systems Applications. Volume 4653 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007) 874–883

14. Seidenberg, J., Rector, A.: Web ontology segmentation: analysis, classification and
use. In: WWW ’06: Proceedings of the 15th international conference on World
Wide Web, New York, NY, USA, ACM (2006) 13–22

15. Schade, S., Maué, P., Langlois, J., Klien, E.: Knowledge acquisition with geologists
- a field report. In: ESSI1 Semantic Interoperability, Knowledge and Ontologies,
EGU General Assembly 2008. (2008)

16. Weibel, S.L., Koch, T.: The Dublin Core Metadata Initiative: Mission, Current
Activities, and Future Directions. D-Lib Magazine 6 (2000)

17. Horridge, M., Drummond, N., Goodwin, J., Rector, A.L., Stevens, R., Wang, H.:
The Manchester OWL Syntax. In Grau, B.C., Hitzler, P., Shankey, C., Wallace,
E., Grau, B.C., Hitzler, P., Shankey, C., Wallace, E., eds.: OWLED. Volume 216
of CEUR Workshop Proceedings., CEUR-WS.org (2006)

18. Schade, S.: D3.3 Ontology Repository with ontologies. Technical report, University
of Münster (2008)

19. Guarino, N.: Formal Ontology and Information Systems. In Guarino, N., ed.: Pro-
ceedings of FOIS’98, Trento, Italy, 6-8 June 1998., Amsterdam, IOS Press (1998)
3–15

20. Guarino, N., Welty, C.: Identity, Unity, and Individuality: Towards a Formal
Toolkit for Ontological Analysis. In: Proceedings of the 14th European Conference
on Artificial Intelligence (ECAI), IOS Press (2000) 219–223

21. Koutsomitropoulos, D.A., Paloukis, G.E., Papatheodorou, T.S.: Semantic applica-
tion profiles: A means to enhance knowledge discovery in domain metadata models.
Metadata and Semanticss (2009) 23–33

22. Sauermann, L., Cyganiak, R., Völkel, M.: Cool URIs for the Semantic Web (2007)
23. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical

report, W3C (2008)
24. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. In: The Semantic Web ISWC
2002. Lecture Notes in Computer Science. Springer (2002) 54–68

25. Erdogmus, H.: Cloud computing: Does nirvana hide behind the nebula? IEEE
Software 26 (2009) 4–6

90

Ontology Recommendation for the Data
Publishers?

Antoine Zimmermann1

Digital Enterprise Research Institute
National University of Ireland, Galway, Ireland

firstname.lastname@deri.org

Abstract. We present a process for recommending Web ontologies that
exemplifies quality, based on criteria that stimulate their reuse and spread-
ing among data publishers: best practices, support by publishers and
applications. The quality of ontologies can be assessed in a semi-automatic
peer-review process.

1 Introduction

RDF data publishing on the Web has gathered momentum in the last few years,
thanks to a general effort to link open data all over the Web. Yet, this trend
is slowed down by the difficulty to find appropriate terms for the data to be
described. Indeed, apart from a handful of well known ontologies, there are no
readily available, easily findable vocabularies for most of the domains that would
be good candidates for publishing data in a standard, linkable way.

The typical problems faced by would-be data publishers are: (1) ontologies
defining the domain of interest do not exist; (2) they exist but are difficult to find
because developed by small groups for experimentation, lacking advertisement;
(3) they exist and can be found but they are of poor quality, not complying with
standards or best practices; (4) they exist and can be found but there are too
many, of mixed quality, and it is difficult to assess which ones are appropriate
for a specific use case.

To address the first issue, user-friendly ontology editors have been developed
Swoop1, Protégé2, etc. But this mostly requires that ontology and domain ex-
perts publish more and more data and terminologies. We assume that this will
naturally happen when Linked Data and Semantic Web technologies will reach a
critical mass which trigger a virtuous circle. We will not address this issue here.

The second item is somehow addressed by Semantic Web search engines.
Several of them have been proposed, such as Swoogle [1], Sindice [2], SWSE [3],

? I would like to thank the Pedantic Web Group (http://www.pedantic-web.org/)
for their useful discussions, and more particularly Stéphane Corlosquet, Richard
Cyganiak, Renaud Delbru, Alexandre Passant and Axel Polleres. This work is partly
funded by Science Foundation Ireland (SFI) project Lion-2 (SFI/08/CE/I1380).

1 http://code.google.com/p/swoop/
2 http://protege.stanford.edu/

91

FalconS [4], Watson [5], OntoSearch [6], Ontosearch 2 [7]. Besides, ontologies can
be gathered together in repositories [8, 9] that provide additional functionalities
for maintaining them. This can address to some extent the third and fourth items
because voluntarily submitted ontologies are more likely to be considered by their
authors as being of sufficient quality rather than ontologies randomly retrieved
from the Web. Moreover, the implemented functionalities may help correcting
possible errors and eventually would only display formally valid terminologies. To
address the last issue, it has been proposed to add, e.g., Web 2.0-like rating and
voting functions to search engines and repositories (e.g., Revyu [10]). However,
reviewing ontologies needs advanced knowledge in fields that the ontology users
may not have, and the ontology experts are not necessarily inclined to judge
ontologies in the same way as social website assess conversations, products, etc.

Therefore, we believe that to guarantee access to the ontologies that are
available, well supported and of quality, there is a need for promoting them more
actively. In this paper, we argue in favour of having a committee of experts anal-
yse Web vocabularies with respect to their suitability as reusable terminologies
for data publishers. As a result of this analysis and evaluation—which can be
partly automatised—the committee would advertise the ontology as a “quality
vocabulary” and recommend it for describing information in the field applicable
to such terminology.

To present this idea in more details, we first discuss the criteria that a Web
terminology should fulfil to be labelled as “quality vocabulary” (Section 2).
Then, we describe a possible approach to implement such an evaluation and
recommendation framework (Section 3). Finally, we show how this integrates
with ontology repositories (Section 4).

2 Criteria for a recommended Web vocabulary

Our objective in recommending Web vocabularies is focused on helping data
publishers to find adequate terms for describing their data. For this reason our
proposed initiative distinguishes itself from other ontology evaluation activities
that focus more on engineering, design and logical issues. Moreover, we do not
pretend to assess the quality of the modelling of the domain of interest, which
could only be judged by a domain expert. Also, we encourage small, lightweight
ontologies, which are easier to assess, reuse and scale. In this section we discuss
possible criteria for quality vocabularies, recommended for reuse over the Web
of Data. More precisely, data publishers would expect vocabularies that are: (1)
justified by use cases; (2) easy to reuse and publish; (3) well interoperable with
published Linked Data. We analyse these requirements to determine the criteria
for quality vocabularies.

Justifying the existence of the vocabulary. As a primary requirement, a
vocabulary should be accompanied by a statement about its utility. This in-
cludes a general description of the vocabulary and its scope as well as, more
importantly, its related use cases. To avoid too much subjectivity in deciding

92

the relevance of a vocabulary in terms of usage, it can be required that a Web
vocabulary proposed for recommendation should be supported by at least some
data publishers. We consider this criteria a very important one and would not
recommend a vocabulary, be it very well designed, if nobody considers using it.
Usage should not be restricted to a unique dataset, not even to a big one by a
major player in the field. At least two independent parties should be using the
terms, or there should be strong evidence that the terms will be used by sev-
eral distinct publishers in the near future. As an alternative proof of relevance,
the vocabulary publisher could claim potential adoption by showing precise ex-
amples of possible usage. E.g., a geo-location vocabulary can be proven to be
useful if the authors show that translating existing geographic databases into
linked data can be done in an easy and straightforward way to create and pub-
lish multiple datasets at a low cost. Finally, the utility of the vocabulary can be
demonstrated if existing applications are usefully exploiting the associated data.
This can justify the recommendation of a vocabulary since all data conforming
to it will interoperate with those existing applications.

Ease of reuse and publication. Since one of the goal of recommending vocab-
ularies is to increase interoperability by reducing the number of heterogeneous
terminologies, it is important that the vocabulary be reusable as easily as possi-
ble. To achieve this, the content should be made understandable by non-ontology
experts. Thus, one of the criteria is the presence of clear labels and textual de-
scriptions for each term in the ontology. Moreover, granularity and complexity
should be in line with the use cases. Highly expressive or too specific ontolo-
gies should be discouraged if they are not seriously justified. Finally, publication
of data conforming to the proposed vocabulary should be made easier, e.g., by
providing tools that automatise (partly or totally) the publishing process. For in-
stance, FOAF and SIOC exporters make the creation of online community RDF
metadata fully automatic when integrated in a content management system.

Interoperability. To ensure better interoperability, several guidelines have to
be followed. Obviously, vocabularies should be published in a standard format,
namely RDF(S) and OWL. Additionally, since vocabularies are themselves part
of the Linked Data, they should follow the best practices in the field [11]. This
includes, e.g., URI dereferencability, entity naming schemes, or authoritative-
ness of term definition. A term definition is considered “authoritative” if it
describes an entity which is in the namespace of the document describing it.
Most of these practices can be checked automatically, using, e.g., RDF:Alerts3.
Moreover, vocabularies are also used to reason about the data, so special care
must be taken with this respect. It is desirable to enable interoperability of
the vocabulary with both OWL tools and RDFS tools. On the one hand, an
OWL ontology can be made more RDFS-friendly by defining all classes as both
owl:Class and rdfs:Class. Similarly, properties defined as owl:ObjectProperty,
owl:DatatypeProperty and owl:AnnotationProperty should also be defined as

3 http://swse.deri.org/RDFAlerts/

93

rdf:Property. On the other hand, RDFS terminologies should declare each term
as either of the aforementioned types, unless a strong justification comes from
the use cases. For instance, the Dublin Core vocabulary does not specify the type
of its properties in order to preserve flexibility. Also, an OWL ontology should be
kept compatible with OWL DL as much as possible, and any exception should be
justified. More generally, vocabularies should use the least expressive fragment
of OWL that fulfils the desired requirements.

3 Implementing the recommendation process

This section shows how a framework for recommending Web vocabularies could
be implemented in practice.

We notice that most ontologies and Web vocabularies, especially the most
popular ones, are developed by academic researchers (FOAF, SIOC, Good Re-
lations, Music Ontology, etc.) Thus, it would be possible to incite the ontology
builders to publish their creation through our quality assessment process by
establishing a regular submit/review/accept-reject process. An ontology or ter-
minology for data publishing offers a solution to a problem or fulfil a certain
need. It can thus be seen as a scientific contribution. We propose to have a call
for vocabularies with a review process and editorial constraints.

First, an automatic tool will verify the compliance of the submitted vocabu-
laries to the well established criteria mentioned in Section 2. If these are matched,
then a peer-reviewing process will be undertaken by the committee, considering
what has been discussed in the previous section. A submitted ontology must be
accompanied by a description that will be published together with the ontology.
The description—which can take the form of an article—must explains the pur-
pose of the ontology—not only its domain but also its scope and granularity as
well as possible or existing applications using it. It must show the utility and the
need for such a vocabulary. This is partly proven by the fact that existing (in-
dependent) datasets are already using the terms or publishers have committed
to use it in the near future.

The descriptions should be kept understandable by non-ontology specialists,
and technical details can be given if, and only if, it contributes to showing the
utility and interoperability of the vocabulary. As a result of this process, the
ontology is either deemed not suitable for recommendation or recommended as
a “quality vocabulary”. Rejected ontologies can be improved and resubmitted
later, eventually leading to better quality of the vocabularies. A centralised Web
site would advertise these ontologies, provide documentation about them and
allow searching and browsing them. Such a central place could be an existing
ontology repository, as discussed in the next section.

4 Integrating recommendations in an ontology repository

The recommended ontologies should be easily searchable, browsable as well as
matchable. These are common tasks made possible by ontology repositories.

94

Therefore, the recommendation process that we described previously may be
integrated into a repository that could possibly include other non-recommended
ontologies. However, the recommended ones should be emphasised and all opera-
tion should be applicable to the quality ontologies only. Moreover, non-recommended
vocabularies could be marked by specific labels indicating that, although they
are not recommended, they validate some of the criteria for quality.

5 Conclusion

In this paper, we argued that data publishers should be guided in their choice
of vocabularies by actively recommending them ontologies that are considered
of quality. The recommendation should be based on criteria that span from
support by existing publishers and applications to the compliance to the best
practices in this field. Evaluating those criteria could take the same form as an
academic publication process, with a review phase. As a first step, we would like
to launch a workshop on this topic which would create, we hope, an incentive
for researchers to design and publish quality ontologies for the Web of Data.

References

1. Finin, T., Ding, Z., Pan, R., Joshi, A., Kolari, P., Java, A., Peng, Y.: Swoogle:
Searching for Knowledge on the Semantic Web. In: Proc. of AAAI 2005, AAAI
Press / The MIT Press (July 2005) 1682–1683

2. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: a document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies 3(1) (2008) 37–52

3. Harth, A., Hogan, A., Umbrich, J., Decker, S.: SWSE: Objects before documents!
In: Proc. of the Billion Triple Semantic Web Challenge. (2008)

4. Cheng, G., Ge, W., Qu, Y.: FalconS: Searching and Browsing Entities on the
Semantic Web. In: Proc. of WWW 2008, ACM Press (April 2008) 1101–1102

5. d’Aquin, M., Sabou, M., Dzbor, M., Baldassare, C., Gridinoc, L., Angeletou, S.,
Motta, E.: WATSON: A Gateway for the Semantic Web. In: Poster session of the
European Semantic Web Conference, ESWC. (2007)

6. Zhang, Y., Vasconcelos, W., Sleeman, D.: OntoSearch: An Ontology Search Engine.
In: Proc. of AI-2004. BCS Conference Series, Springer (2004)

7. Thomas, E., Pan, J.Z., Sleeman, D.: ONTOSEARCH2: Searching Ontologies Se-
mantically. In: Proc. of OWLED 2007. Volume 258 of CEUR Workshop Proceed-
ings., Sun SITE Central Europe (CEUR) (June 2007)

8. Pan, J., Cranefield, S., Carter, D.: A lightweight ontology repository. In: Proc. of
AAMAS 2003, ACM Press (July 2003) 632–638

9. d’Aquin, M., Lewen, H.: Cupboard - A Place to Expose Your Ontologies to Ap-
plications and the Community. In: Proc. of ESWC 2009. Volume 5554., Springer
(June 2009) 913–918

10. Heath, T., Motta, E.: Revyu: Linking reviews and ratings into the Web of Data.
Journal of Web Semantics 6(4) (2008) 266–273

11. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web. web
published (July 2007)

95

Semantic Interoperability Framework for Estonian

Public Sector's E-Services Integration

Kalle Tomingas1, Martin Luts2,3

1Department of Computer Science, Tallinn University of Technology, Estonia,

2Department of Informatics, Tallinn University of Technology, Estonia

3ELIKO Competence Centre in Electronics-, Info- and Communication Technologies, Tallinn, Estonia

April 26, 2010

Abstract

E-services, based on automated data exchange in distributed technological and
organizational environment, are an e�ective way to build cross-border, controlled
information services. Processes of creation, integration, management, reuse, dis-
covery and composition of e-services are not very e�cient without understand-
ing the meaning of information resources. Creation and management of human
and machine readable semantics of heterogeneous and distributed information
resources are more complicated than coordinated documentation process, and
require new interoperability principles, architecture and infrastructure. This pa-
per outlines the idea and architecture of the Estonian semantic interoperability
initiative in the public sector. The paper presents a collaborative ontology engi-
neering toolset and repository as a part of interoperability infrastructure, built
with Semantic Mediawiki, to manage the semantics of information resources.

Keywords: semantic interoperability, ontology, web service, web service anno-
tation, semantic mediawiki, rdf/rdfs, owl, wsdl/sa-wsdl.

1 Introduction

This paper describes the Estonian public sector's semantic interoperability initiative
and outlines the architecture of semantic integration of State Information Systems
and e-services. The paper provides a framework, a toolset and a collaborative se-
mantic assets management solution in the Semantic Mediawiki1 (SMW) environment.
We concentrate on the practical implementation of infoware metadata management
like web services descriptions, ontologies, classi�ers, their creation, import and export,
versioning, collaboration and change management. The paper shows how annotation
and linking of di�erent assets allows us to realize the semantic interoperability idea,
manage the heterogeneous information resources and give them human and machine
readable semantics. The given semantics is used for search, mange and re-use of exist-
ing information assets components, quality insurance, new web services discovery and
composition.

Examples of semantic interoperability initiatives can be found in di�erent EU coun-
tries: UK Public Sector Linked Data Government 2, Germany's Deutschland Online3,

1http://semantic-mediawiki.org
2http://data.gov.uk/
3http://www.deutschland-online.de/DOL_en_Internet/broker.jsp

1

96

Italian Public Administration4, Finnish FinnONTO5 [2], Estonian Semantic Interop-
erability Framework [1] or Latvian's Semantic Latvia [3]. Ideas behind those projects
vary from human readable semantic descriptions to a large-scale international semantic
interoperability infrastructure. Other examples about Pan-European semantic inter-
operability initiatives are SEMIC (SEMantic Interoperability Centre Europe)6, led by
the European Commission's ISA7 program and SemanticGov8, which is targeted to
provide integrated public services to citizens at the national or Pan-European level [4].
SEMIC is designed as a brokerage platform for existing third party semantic assets
(e.g. classi�cation lists, ontologies, etc.). The aim of SemanticGov is to build the new
infrastructure (software, models, services, etc.) necessary for enabling the o�ering of
semantic web services for public administration agencies, within and between the EU
countries.

2 Semantic Interoperability Architecture

The semantic interoperability architecture for state information system and registries of
Estonia (see Figure 1) consists of the following interrelated components: ontologies and
semantically annotated objects supported by policies and guidelines, several processes
and work�ows, tools, educational activities, PR among others. The Administration
System for the State Information System [5]and Semantic Asset Management Envi-
ronment (SEHKE) are the central tools in the semantic interoperability architecture
for the state information system. SEHKE ful�lls the following tasks in the semantic
interoperability architecture: hosting and publishing of ontologies, infoware's metadata
including semantic annotations; serving as a semantic search engine for semantic assets
(resources).

SEHKE works to ensure the interoperability of public sector registries and the reuse
of technical, organizational and semantic resources. For end-users, SEHKE is the tool
for obtaining information about existing services (as well as about service descriptions
and the principles of service provision) and apply for the right to use a service or
propose the creation of a new service.

One of the main components of the semantic interoperability architecture � as de-
signed for Estonian state registries � is ontology. We use the term `ontology' meaning
�a formal explicit speci�cation of a shared conceptualization for a domain of interest�
[6] and �information about how individuals are grouped and �t together in a partic-
ular domain�. Currently, there are some ontologies in Estonian, which could be used
to annotate operations performed by state registries and other objects. The ontology
component in our architectural framework is not a monolithic structure � for the pur-
poses of easier, domain-expert driven maintenance, it is divided into subject areas or
domains, e.g. �Environment�, �Social A�airs�. The initial tree for categorizing ontolo-
gies is based on the o�cial naming of EU activities. The language used in the semantic
description of ontology objects draws from W3C recommendation OWL (Web Ontol-
ogy Language)9. Ontologies are developed and maintained in a distributed manner,
but stored and published centrally. The tools to be used for ontology maintenance are
not prescribed as long as certain standards are followed (e.g. Collaborative Protégé,
Semantic Mediawiki or others). In the next section, we give an overview of a new online
collaborative tool for semantic resources management, which is playing an important

4http://www.cnipa.gov.it/site/it-IT/
5http://www.seco.tkk.�/projects/�nnonto/
6http://semic.eu/about_semantic_interoperability_centre_europe.html
7http://ec.europa.eu/isa
8http://www.semantic-gov.org/
9http://www.w3.org/TR/2004/REC-owl-features-20040210

2

97

Figure 1: Semantic interoperability conceptual architecture for state information sys-
tem and registries

part in the large-scale semantic interoperability initiative.

3 Collaborative Semantic Resource Management

SEHKE is a web-based collaborative environment for creating, management and an-
notation of semantic resources and assets of state information systems and registries..
SEHKE is built to handle information resources like ontologies, concepts and proper-
ties, subject areas (domains of interests), web service descriptions and classi�cations.
SEHKE environment is one piece in the big picture of large-scale semantic interop-
erability architecture. The functionality of the SEHKE toolset covers the creation
process of the information assets (e.g. ontologies, web service descriptions, classi�ers),
the semantic annotation of web service descriptions, collaboration, responsibility, noti-
�cations and approval, quality and version control, import and export, semantic search
and �nally (re)usage of all assets. The SEHKE environment is set up and implemented
in the Semantic Mediawiki environment, where the needed functionality is built with
semantic extensions, templates and forms, existing plugins and new developed compo-
nents for special requirements (import and export).

System concepts of the SEHKE environment are based on the main categories of
semantic assets. System concepts are implemented as wiki pages, with certain types
of mandatory properties and a set of de�ned forms, to create and manage a content
of di�erent concept types. One required property is �Type�, which is the main in-
strument to categorize concepts (e.g. [[Type::Ontology]]). Each SEHKE concept has
its own set of required or allowed properties that are used to implement the possi-
ble relationships between di�erent system concepts (e.g. ontology page has property
[[SubjectArea::Economy]] to de�ne a relation that the ontology belongs to the sub-
ject area). Named and implemented properties and their values form the schema of
concepts (Figure 2) that represents the semantic interoperability requirements and the
structure of SEHKE functionality.

Ontology is one of the key concepts of the SEHKE tool and it stands for formal-
ized semantics. Ontology is a named set of concepts, their de�nitions, hierarchies and
properties that represents the conceptualization of the domain or subject area, which

3

98

Figure 2: Schema of system concepts of SEHKE environment

is in the interest of the Estonian public sector. Ontology and its concepts are besides
web services descriptions and classi�cations a main type of semantic assets. Ontology
belongs to the subject area that frames the domain and the responsibility of the owner
of the ontology. Ontology is implemented as a special page, with the idea to group
and collect related classes, their properties, instances and rules. Ontology, its member
concepts and properties (data and object properties) can have multiple terms (set of
names and descriptions) in di�erent languages, which explain the meaning of the item.
Concepts (classes) are organized into taxonomies or hierarchies (e.g. using property
de�nition [[subclassOf::ParentConceptName]] to associate concept page with a higher
level concept), and they can have certain formalization rules that can be automatically
checked and validated by automatic reasoning programs. The creation of ontologies,
concepts and properties is simpli�ed through automated detection of similar assets,
supported by syntactic and semantic search algorithms and backed with the di�erent
language techniques. Ontology creation and management has online collaborative sup-
port functions, like email noti�cations, change acceptance and an iterative process for
achieving consensus between multiple parties. The collection of all SEHKE pages forms
the general wiki namespace (e.g. http://www.sehke.eu/ is the namespace of public in-
stance of the SEHKE environment). In addition to the wiki's namespace, ontology has
special �Namespace� property (e.g.), for di�erent namespace values that are used in
ontology export/import to rdf/owl. The multiuser collaborative editing, multilingual
terms and descriptions and con�gurable language techniques makes the SEHKE a real
multi-national semantic tool.

WSDL is a SEHKE concept for web services descriptions that documents e-services
of the Estonian state information system's data transportation layer X-Road (Estonian
X-Tee)10. X-Road currently supports the technical interoperability of the components
of state information systems and registries and SEHKE is like an extension for adding
a semantic layer top of the X-Road infrastructure. Web services description documents

10http://www.riso.ee/en/information-policy/projects/x-road

4

99

are semantic assets, which can be imported and exported in WSDL/SA-WSDL11 lan-
guage. The essential idea of semantic interoperability is to add semantic annotations
to web services input/output data elements and structures and related operations. De-
�ned ontology's concepts and data or object properties are the key ideas that are used
for WSDL annotations. An annotation is a semantic relationship between a WSDL ele-
ment and an ontology's concept, which can be created manually or semi-automatically
(in the future releases), using syntactic and semantic search algorithms, to match sim-
ilar terms with the concepts (e.g. SAWSDL modelReference extension attribute used
to associate WSDL elements with a semantic model). Semantic annotation of web
services brings us to the next level, which makes available automatic discovery of web
services and composition of new web services. The composition of new services is based
on existing services, operations and their input/output data elements, which have a
semantic match on the conceptual level.

4 Conclusions

The main approach to extend semantic interoperability in communication and informa-
tion exchange process is to build a higher semantic integration layer on top of participat-
ing information systems and organizations. Mapping critical communication structures
against ontologies and the same semantic concepts using annotation techniques adds
human- and machine-readable semantics to the process. Opening the meaning of sys-
tem components and functions, integrating computer programs, linguistic techniques
and human touch to knowledge management process, we ful�ll the promises and ex-
pectations of semantic interoperability idea and creating better public sectors services.
The SEHKE toolset that is powered with semantic functionality of the SMW is the
open platform for collaboration and semantic asset management (e.g. ontologies) and
meant to be part of federated pan-European repository initiative: SEMIC.EU [7].

References

[1] Haav, H.M., Kalja, A., Küngas, P., Luts, M.: Ensuring Large-Scale Semantic Interoperability:
The Estonian Public Sector's Case Study. Databases and Information Systems V, IOS Press 2009,
pp.117-129.

[2] Hyvönen, E., Viljanen, K., Tuominen, J., Seppälä, K.: Building a National Semantic Web
Ontology and Ontology Service Infrastructure - The FinnONTO Approach. In Proceedings of
the European Semantic Web Conference (ESWC 2008), Tenerife, Spain, 2008, (available at
http://www.seco.tkk.�/publications/2008/hyvonen-et-al-building-2008.pdf)

[3] Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M., Podnieks, K.:
Towards Semantic Latvia. In Proceedings of Communications of 7th International Baltic Confer-
ence on Databases and Information Systems. Vilnius, Lithuania, 2006, pp. 203-218, (available at
http://melnais.mii.lu.lv/audris/CReady_Barzdins_TowardsSemanticLatvia.pdf)

[4] Vitvar, T.: Infrastructure for the Semantic Pan-European E-government Services. In Proceedings
of the 2006 AAAI Spring Symposium on The Semantic Web meets e-government (SWEG), 2006,
(available at http://www.semantic-gov.org/index.php?name=Web_Links&req=visit&lid=4)

[5] Vallner, U.: Nationwide Components of Estonia's State Information System. In Baltic IT&T
Review 3(42), 2006.

[6] Gruber, T.R.: A Translation Approach to Portable Ontology Speci�cations. In Knowledge Acqui-
sition, Vol. 5, 1993, pp.199-220.

[7] Reichling, K., Luts, M., Fahl-Spiewack, R.: A pan-European repository: SEMIC.EU as the point
of reference for eGovernment ontologies, ORES, 2010

11http://www.w3.org/TR/2007/REC-sawsdl-20070828

5

100

Ontology Repositories with Only One Large Shared
Cooperatively-built and Evaluated Ontology

Philippe A. Martin
ESIROI STIM, University of La Réunion, France

 and adjunct researcher of the School of I.C.T. at Griffith Uni., Australia

Abstract. This article first lists reasons why an ontology repository - or, more
generally, a knowledge base (KB) server - should permit the collaborative
building of one well organized KB rather than solely be a repository for
heterogeneous KBs. To that end, the article proposes a KB editing protocol that
keeps the KB free of automatically/manually detected inconsistencies - and
leads knowledge providers to semantically organize their terms and statements -
while not forcing them to discuss or agree on terminology and beliefs nor
requiring a selection committee. Then, the article gives ideas on how to extend
this support to allow a precision-oriented collaborative evaluation of each
information provider and piece of information.

Keywords: knowledge sharing/integration/retrieval/evaluation

1 Introduction

Ontology repositories are often only imagined as being collections of static formal files
(e.g., RDF documents) more or less independently developed, hence loosely inter­
connected and mutually partially redundant or inconsistent. Section 2 shows that this
"static file based approach" ­ as opposed to a "collaboratively­built well­organized large
knowledge base (cbwoKB) server approach" ­ makes knowledge sharing/re­use tasks
complex to support and do correctly or efficiently, especially in a collaborative way.
Most Semantic Web related research works are intended to support such tasks
(ontology creation, retrieval, comparison and merging) and hence are useful. However,
most often, they lead people to create new formal files ­ thus contributing to the
problems of knowledge re­use ­ instead of inserting their knowledge into a cbwoKB
server. Indeed, it seems that WebKB­2 [10] (webkb.org) is the only ontology server that
has protocols supporting governance-free loss-less well-organized knowledge sharing.
(There are no such protocols in CYC, Ontolingua, OntoWeb, Ontosaurus, Freebase,
semantic wikis ...). WebKB-2 also has a large general ontology and hence has at least
two of the elements necessary to build a cbwoKB (Other “shared ontology”
servers/editors i) let any authorized users make any change in the shared ontology
(this discourages information entering or leads to edit wars), or ii) rely on each user
or some privileged users to accept or reject changes made in the shared ontology (this
is bothersome for the evaluators, sometimes forces them to make arbitrary selections,

101

and is a bottleneck in information sharing that can cause long delays or discourage
information providers). Section 3 gives protocols - with many yet unpublished ideas -
to avoid these governance problems and thus support scalable collaborative building
of a cbwoKB, i.e., a KB where detected partial redundancies or inconsistencies are
prevented or made explicit via relations of specialization, identity and/or correction;
thus, in a cbwoKB, each object has one "right place" in the specialization hierarchy
and is then easily retrievable and comparable to the other objects. Section 4 gives
ideas on how this support can be extended to allow collaborative knowledge
evaluation.

2 Approaches Based on Files Versus cwoKB Servers

With files, information retrieval (IR) often leads to a list of possibly relevant files or
pieces of information (objects, e.g., a formal term or a informal sentence) whereas it
leads to an exact answer in a cbwoKB or within the content of one formal file. Such
an answer may be a portion of the cbwoKB, e.g., a part/subtask/specialization
hierarchy (with associated argumentation structures) if the query is of the kind "what
are the resources/tools/methods to do ...". Such semantically structured answers allow
a user to find and compare all relevant objects instead of getting a long redundant list
of objects/files where original/precise ones are hidden among/behind objects that are
more general, mainstream or from big organizations. This is also why IR quality
decreases when the size and number of the files increases, but not when the number
of objects increases in a cbwoKB.

The more objects two files contain, the more difficult it is to link these files via
semantic relations and hence to semantically compare, organize and evaluate them.
Instead, similarity/distance (statistical) measures have to be used. In a cbwoKB, when
needed, semantic queries can be used to filter objects or generate files, according to
arbitrary complex combinations of criteria, e.g., about the creators of the objects.
(Some of these criteria may be used for the internal organization of the cbwoKB but
the resulting "views" or "contexts" are language/representation dependent choices and,
unlike (semi-)independently created static files, lead the users to strongly relate
objects of different views). Ontology libraries, from the first ones such as the
Ontolingua library to imagined ones such as "The Lattice of Theories" [15], are often
organized into "minimal and internally consistent theories" to maximize their re-use.
However, this also leads to few relations between objects of different ontologies, as
well as implicit redundancies or inconsistencies between them, and hence more
difficulties to compare, merge or relate them. On the other hand, as acknowledged by
the author of [15], if the objects are organized into a cbwoKB, such (lattices of)
theories can be generated via queries.

With files, change management requires version management (which leads to more
files and many information management complications); not within a cbwoKB, as
Section 3 shows.

102

With formal files as inputs and outputs, knowledge re-use or integration leads to
the creation of even more files and requires people to select, compare, relate, merge,
adapt and combine (parts of) files. Except for simple applications where fully
automatic tools can deliver good-enough results, these are complex tasks that have to
be done by trained people who know the domain. Most works in collaborative
knowledge sharing or "ontology evolution in collaborative environments" are about
(semi-)automatic procedures for integrating two ontologies [5] and for rejecting or
integrating changes made in other ontologies, e.g., [2][12][13]. In a cbwoKB, no
adaptation or integration has to be done for each re-use: the most important/defining
relations from an object to other ones have to be entered by its creators and then they
can be incrementally complemented or corrected by any user. Indeed, it is often the
case that only the object authors know what their objects really mean or have some
other kinds of information required for relating their objects to other ones.

A cbwoKB maximizes the use of principled multi-inheritance hierarchies (for
specialization/mereological/spatial/... relations) where each object has one "right
place" in the sense that different users would search or insert this object at the same
place. Only a KB server with a large cbwoKB can permit a knowledge provider to
simply/directly add one new object "at its right place" and guide her to provide precise
and re-usable objects that complement the already stored objects. The protocols of the
next two sections work only with a cbwoKB.

3 Collaborative Editing of a KB

The next points describe the principles behind the editing protocols implemented in
WebKB-2 to make it a cbwoKB server, and make some comparisons with features of
RDF (which only supports a personal-file based approach). WebKB-2 allows the use
of several knowledge representation languages (KRLs): RDF/XML (an XML format
for knowledge using the RDF model), KIF and other ones which are here collectively
called KRLX and that were specially designed to ease knowledge sharing: they are
expressive, intuitive and normalizing (i.e., they guide users to represent things in ways
that are automatically comparable). One of them is named Formalized English (FE). It
will be used for the examples.

1. In WebKB-2, every object is a term or a statement (generally, a relation between
two quantified terms or some relations within the same context, i.e., meta-
statement). A term refers to a concept/relation type or an individual (an instance of
a first-order type). A statement is an individual and is either informal, formal or
semi-formal (when it uses a formal syntax and some terms/objects that are
informal or referring to informal/semi-formal objects). A (semi-)formal term is a
unique identifier for a (semi-)formal object. An informal term is a name for an
object. Different objects may have common names, not common identifiers.
Every (semi-)formal object has an associated source: creator or source file. The
(unique) meaning of a (semi-)formal object may be left implicit and hence might
be known only by its creator. Informal objects may also have an associated creator:

103

their meanings are those that their source has implicitly given them. These
distinctions permit the differentiation of (in-)formal objects and create one
specialization/generalization hierarchy categorizing all objects. More precisely,
this is an "extended specialization/generalization" hierarchy since in WebKB-2 the
classic "generalization" relation between formal objects (logical implication) has
been extended to apply to informal objects too.
In KRLX, informal objects are double quoted, and object identifiers are either
URIs or include their source identifiers as prefixes or suffixes. This is a common
solution to avoid lexical conflicts. KRLX allows the use of shortcuts for a source
may be used, e.g., wn#bird refers to one of the WordNet categories for the
English word "bird". The informal statement "birds fly"_[u1] was
created by the user u1. A difference with XML name-space prefixes in RDF/XML
is that the lexical declaration of a shortcut is also a semantic declaration of a term
for the source, thus encouraging the creator of the declaration to specify what the
source is (a person, a file, etc.); this is also possible in RDF but is not mandatory.
More importantly, RDF has no notion of "belief" whereas in WebKB-2 each object
is, in a sense, contextualized by its source. For example, if a statement S created by
a user U is not a definition, it is a belief of U. Similarly, a statement by a user U on
another user's statement S2 is actually U's belief on his interpretation of S.
In KRLX, a user also has an easy way to i) represent his belief that certain
statements belong to a certain source, or ii) associate a private key with its user
identifier to prevent another user to impersonate him, and iii) use an encrypted
form of this key (i.e., the related public key) for identifying himself.
A KRL that is meant to support knowledge sharing should offer normalized ways
to allow this so that knowledge sharing tools can support reasoning or
collaboration based on the knowledge sources. RDF and RDF/XML do not yet
offer a standard way to allow this. This will come: SPARQL and N3 already offer
a way to specify that a statement belongs to a source.

2. Any user can add any object and use it in any statement (as in RDF) but an object
may only be modified or removed by its creator. This last part has no equivalent in
RDF since it is a knowledge model, not a collaboration model.

3. Each statement has an associated source S, and hence, if it is not a definition of a
term created by S, is considered as a belief of S. When the creator of an object is
not explicitly specified, WebKB-2 exploits its "default creator" related rules and
variables to find this creator during the parsing. Similarly, unless already explicitly
specified by the creator, WebKB-2 uses the "parsing date" for the creation date of
a new object. Unless already specified, the creator of a belief is encouraged to add
restrictive contextualizing relations on it (at least temporal and spatial relations
must be specified).
A definition of a term T by the creator C of T may be said to be "neither true nor
false" or "always true by definition": a definition may be changed by its creator but
then the meaning of the defined term is changed rather than corrected. No one
(including C) is allowed to state something about T that is inconsistent with the
definition(s) of T. A user u1, is perfectly entitled to define u1#cat as a subtype

104

of wn#chair; there is no inconsistency as long as the ways u1#cat is further
defined or used respect the constraints associated with wn#chair. A definition
associated with T by a source S that is not C is actually a belief of S about the
meaning of T. At parsing time, WebKB-2 rejects such a belief if it is found
(logically) inconsistent with a definition of T by S.
Universally quantified statements are not definitions. Unlike KIF and N3, RDF
and OWL do not have a universal quantifier and hence force users not to make the
distinction. In WebKB-2, this distinction leads to very different conflict resolution
strategies (conflict between two statements of different sources).

• A conflict that involves two definitions by two sources S1 and S2 is a
misinterpretation by one of the sources, say S2, of the meaning of a term
S1#T created by the other source, and hence is solved by automatic term
cloning of S1#T, i.e., by creating S2#T with the same definitions except for
one and then replacing S1#T by S2#T in the statements of S2. The difficulty
is to automatically guess a relevant candidate for S1#T and a relevant
definition to remove for the overall change to be minimal. Annex 2 of [11]
provides some algorithms to do so in common cases.

• Otherwise, a loss-less correction is used (details in Point 6).

4. If adding, modifying or removing a statement introduces an implicit redundancy
(detected by the system) in the shared KB, or if this introduces an inconsistency
between statements believed by the user having done this action, this action is
rejected. Thus, in the case of an addition, the user must refine his statement before
trying to add it again or he must first modify at least one of his already entered
statements. An "implicit" redundancy is a redundancy between two statements
without a relation between them making the redundancy explicit, typically an
equivalence relation in the case of total redundancy and an extended specialization
relation (e.g., an "example" relation) in the case of partial redundancy.
In WebKB-2, a statement is seen as a graph with an interpretation in first-order
logic and graph matching is used for detecting if one graph (Y) is an extended
specialization of the other (X), i.e., if X structurally matches a part of Y and if
each of the terms in this part is identical or an extended specialization of its
counterpart term in X. For example, WebKB-2 can detect that the FE sentence
`Tweety can be agent of a flight with duration at least
2.5 hours'_[u2] (which means "u2 believes that Tweety can fly for at least
2.5 hours") is an extended specialization (and an "extended instantiation") of both
`every bird can be agent of a flight'_[u1] and `2 bird
can be agent of a flight'_[u1]. Furthermore, these last two
statements are respectively extended specializations of `75% of bird can
be agent of a flight'_[u2] and `at least 1 bird can be
agent of a flight'_[u2]. (Similarly, this last graph can be found to be
exclusive with `no bird can be agent of a flight'_[u3]).
Except for the fact that it takes into account numerical quantifiers and measures
instead of just the existential and universal quantifiers, the graph matching for
detecting an extended specialization is similar to the classic graph matching for a

105

specialization (or conversely, a generalization which is a logical deduction)
between positive conjunctive existential formulas (with or without an associated
positive context, i.e., a meta-statement that does not restrict its truth domain). This
last operation is sound and complete with respect to first-order logic and can be
computed with polynomial complexity if Y has no cycle [3]. Outside this restricted
case, graph matching for detecting an extended specialization is not always sound
and complete. However, this graph matching operation works with language of any
complexity (it is not restricted to OWL or FOL) and the results of searches for
extended specializations of a query graph are always "relevant".
The current reasoner used in WebKB-2 detects extended specializations as well as
the violation of relation signatures or exclusion relations. Since this reasoner
currently does not also use a rule based system or a theorem prover, it is not
complete with respect to first-order logic if rules are represented without using
specialization relations. However, this is irrelevant with respect to this article since
the presented protocols are not related to a particular inference method, they are
only triggered (and hence enforced) whenever an inconsistency or a redundancy is
detected or not when a new statement is entered.
However, it is important to note that i) the detection of implicit extended
specializations between two objects reveals an inconsistency or a total/partial
redundancy, and then ii) it is often not necessary to distinguish between these two
cases to reject the newly entered object. Extended instantiations are exceptions:
since adding an instantiation is giving an example for a more general statement, it
does not reveal a redundancy or inconsistency (here, an inconsistent belief or
incorrect interpretation of a term) that needs to be made explicit.
It is important to reject an action introducing a redundancy instead of silently
ignoring it because this often permits the author of the action to detect a mistake, a
bad interpretation or a lack of precision (on his part or not). At the very least, this
reminds the users that they should check what has already been represented on a
subject before adding something on this subject.
Adding, modifying or removing a term is done by adding, modifying or removing
at least one statement (generally, one relation) that uses this term. A new term can
only be added by specializing another term (e.g., via a definition), except for
process types which for convenience purposes can also be added via
subprocess/superprocess relations. A new statement is automatically added by
WebKB-2 into the extended specialization hierarchy via graph matching or, for
informal statements, solely based on the extended specialization between the
words they include). An automatic categorization may be "corrected in a loss-less
way" by any user. A new informal statement must also be connected via an
argumentation relation to an already stored statement. In summary, all objects are
manually or automatically inserted in the extended specialization hierarchy and/or
the subprocess hierarchy, and hence are easy to search and compare.

5. If adding, modifying or removing (a statement defining) a term T introduces an
inconsistency involving statements created or believed by other users (i.e., users
different from the one having performed this action), T is automatically cloned to

106

ensure that its interpretation by these other users is still represented. In the case of
term removal, term cloning simply means changing the creator's identifier in this
term to the identifier of one of the other users (if this generated term already
exists, some suffix can be added). In a cbwoKB server, since statements point to
the terms they use, changing an identifier does not require changing the
statements. In a global virtual cbwoKB, identifier changes in one server need to be
replicated to other servers using this identifier.
In a cbwoKB, it is not true that beliefs and formal terms (or their definitions, as
well as what they refer to, e.g., concepts) "have to be updated sooner or later".
Indeed, in a cbwoKB, every belief must be contextualized in space and time, as in
` `75% of bird can be agent of a flight' in place
France and in period 2005 to 2006'_[u3], even though such
contexts are not shown in the other examples of this article. If needed, u3 can
associate the term u3#75%­of­birds­fly­­in­France­from­2005­
to­2006 with this last belief. Due to the possibility of contextualizing beliefs it
is rarely necessary to create formal terms such as u2#Sydney_in_2010. Most
common formal terms, e.g., u3#bird and wordnet1.7#bird never need to
be modified by their creators. They are specializations of more general formal
terms, e.g., wn#bird (the fuzzy concept of bird shared by all versions of the
WordNet ontologies). What certainly evolves in time is the popularity of a belief
or the popularity of the association between an informal term and a concept. If
needed, this changing popularity can be represented by different statements
contextualized in time and space.

6. If adding, modifying or removing a belief introduces an implicit inconsistency
involving beliefs created by other creators, it is rejected. However, a user may
"loss-less correct" a belief (that he does not believe in) by connecting it to a belief
(that he believes in) via a corrective relation. E.g., here are FE statements by u2
that correct a statement made earlier by u1:
` `every bird is agent of a flight'_[u1] has for
 corrective­restriction `most healthy flying­bird are
 able to be agent of a flight' '_[u2] and
` `every bird can be agent of a flight'_[u1] has for
 corrective­generalization `75% of bird can be agent
 of a flight' '_[u2].
If instead of the belief `every bird can be agent of a flight', u1 entered the
definition `any bird can be agent of a flight', i.e., if he gave a definition to the type
named "bird", there are two cases:

• u1 originally created this type (u1#bird); then, u2's attempt to correct the
definition is rejected, or

• u1 added a definition to another source's type - say wn#bird since this type
from WordNet has no associated constraint preventing the adding of such a
definition - and hence i) the types u1#bird and u2#bird are
automatically created as clones (and subtypes of) wn#bird, ii) the
definition of u1 is automatically changed into `any u1#bird is agent

107

of a flight'_[u1], and iii) the belief of u2 is automatically changed
into `75% of u2#bird can be agent of a flight'_[u2].

In WebKB-2, users are encouraged to provide argumentation relations on
corrective relations, i.e., a meta-statement using argument/objection relations on
the statement using the corrective relation. However, to normalize the shared KB,
they are encouraged not to use an objection relation but a "corrective relation with
argument relations on them". Thus, not only are the objections stated but a
correction is given and may be agreed with by several persons, including the
author of the corrected statement (who may then remove it). Even more
importantly, unlike objection relations, most corrective relations are transitive
relations and hence their use permits better organization of argumentation
structures, thus avoiding redundancies and easing information retrieval.
The use of corrective relations makes explicit the disagreement of one user with
(his interpretation of) the belief of another user. Technically, this also removes the
inconsistency: an assertion A may be inconsistent with an assertion B but a belief
that "A is a correction of B" is technically consistent with a belief in B. Thus, the
shared KB may (and should) remain consistent.
For problem-solving purposes, i.e., for an application, choices between
contradictory beliefs must be made. To make them, an application designer can
exploit i) the statements describing or evaluating the creators of the beliefs, ii) the
corrective/argumentation and specialization relations between the beliefs, and
more generally, iii) their evaluations via meta-statements (see the next point). For
example, an application designer may choose to select only the most specialized or
restricted beliefs of knowledge providers having worked for more than 10 years in
a certain domain. Thus, this approach is unrelated to defeasible logics and avoids
the problems associated with classic "version management" (furthermore, as above
explained, in a cbwoKB, neither formal terms nor statements have to evolve in
time).
This approach assumes that all beliefs can be argued against and hence be
"corrected". This is true only in a certain sense. Indeed, among beliefs, one can
distinguish "observations", "interpretations" ("deductions" or "assumptions"; in
this approach, axioms are considered to be definitions) and "preferences";
although all these kinds of beliefs can be false (their authors can lie, make a
mistake or assume a wrong fact), most people would be reluctant to argue against
self-referencing beliefs such as "u2 likes flowers"_[u2] and "u2 is
writing this sentence"_[u2]. Instead of trying to formalize this into
exceptions, the editing protocols of WebKB-2 rely on the reluctance of people to
argue against such beliefs that should not be argued against.

7. Like all descriptions of techniques, statement/creator evaluation techniques are
considered as term definitions and are automatically organized into the extended
specialization hierarchy. To support more knowledge filtering or decision making
possibilities and lead the users to be careful and precise in their contributions, a
cbwoKB server must propose "default measures" deriving a global evaluation of
each statement/creator from i) users' individual evaluations of these objects, and
ii) global evaluations of these users. Details are given in the next section. These

108

measures should not be hard-coded but explicitly represented (and hence be
executable by the cbwoKB) to let each user specialize them for its goals and
preferences. Indeed, only the user can find the criteria (e.g., originality, popularity,
acceptance, ..., number of arguments without objections on them) and weighting
schemes that suit him. Then, since the results of these evaluations are also
statements, they can be exploited by queries on the objects and/or their creators.
Furthermore, before browsing or querying the cbwoKB, a user should be given the
opportunity to set "filters for certain objects not to be displayed (or be displayed
only in small fonts)". These filters may set conditions on statements about these
objects or on the creators of these objects. They are automatically executed queries
over the results of queries. In WebKB-2, like conceptual querying, filtering is
based on a search for extended specializations. Filters are useful when the user is
overwhelmed by the amount of information in an insufficiently organized part of
the KB.

8. The approach described by the previous points is incremental and works on semi-
formal KBs. Indeed, the users can set corrective or specialization relations between
objects even when WebKB-2 cannot detect an inconsistency or redundancy. As
noted above, a new informal statement must be connected via an argumentation
relation (e.g., a corrective relation) to an already stored statement. For this relation
to be correct, this new statement should generally not be composed of several sub-
statements. However, allowing the storing of (small) paragraphs within a statement
eases the incremental transformation of informal knowledge into (semi-)formal
knowledge and allows doing so only when needed. This is necessary for the
general acceptance of the approach.

With these editing protocols, each object is connected to at least another object via
relations of specialization/generalization, identity and/or argumentation. They permit
a loss-less information integration, since no knowledge selection has to be made. They
can be seen as enabling a precise asynchronous dialogue between knowledge
providers. To sum up, they permit, enforce or encourage people to interconnect their
knowledge into a shared KB, while keeping the KB consistent but without having to
discuss and agree on terminology or beliefs.

Since the techniques described in this article work on semi-formal KBs and are not
particularly difficult for information technology amateurs - since the minimum these
techniques require is for the users to set the above mentioned relations from/to each
term or statement - they can be used in (semantic) wikis to avoid their governance
problems cited in the introduction and other problems caused by their lack of
structure. More generally, the presented approach removes or reduces the file-based
approach problems listed in the previous section, without creating new problems. Its
use would allow merging of (the information discussed or provided by the members
of) many communities with similar interests, e.g., the numerous different
communities working on the Semantic Web. From an application viewpoint, the
approach seems interesting to allow the collaboratively building of states of the art in
scientific domains, corporate memories, catalogues, e-learning, e-government, e-
science, research, etc.

109

The hypotheses of this approach are that i) conflicts can always be solved by adding
more precision (e.g., by making their sources explicit: different "observations",
"interpretations" or "preferences"), ii) solving conflicts in a loss-less way most often
increases or maintains the precision and organization of the KB, and iii) different,
internally consistent, ontologies do not have to be structurally modified to be
integrated (strongly inter-related) into a unique consistent semantic network. None of
the various kinds of integrations or mappings of ontologies that I made invalidated
these hypotheses.

4 Evaluating Objects and Sources

Many information repositories support free-text/numerical evaluations on objects or
files by people and then display them or statistical measures on them. For example,
Knowledge Zone [8] allows each of its users to i) rate ontologies with numerical or
free text values for criteria such as "usage", "coverage", "correctness" and "mappings
to other ontologies", ii) rate other users' ratings, and iii) use all these ratings to retrieve
and rank ontologies. Such evaluations have several problems: i) the evaluations are not
organized into a semantic network, ii) the above examples of criteria and their
numerical values are not about objects in the ontologies and hence do not help in
choosing between objects, iii) multi-criteria decision making is difficult since two sets
of (values for) criteria are rarely comparable (indeed, one set rarely includes all the
criteria of the other set and, at the same time, has higher values for all these criteria),
and iv) similarity measures on criteria only permit retrieval of possibly "related"
ontologies: the work of understanding, comparing or merging their statements still has
to be (re-)done by each user.

In a cbwoKB, these problems are strongly reduced, since evaluations are on objects
and are themselves objects: they are managed/manageable like other objects and are
integrated into a network of specialization, correction and argumentation relations. As
previously noted, a cbwoKB should provide "default global measures" for the
evaluation of each statement/creator (based on each user's individual evaluations) and
allow the users to refine it. Here are comments (general ones due to space restrictions)
on the global measures that are currently being implemented in WebKB-2.

 A global measure of how consensual a belief is should take into account i) the
number of times it has been re-used or marked as co-believed, and ii) its
argumentation structure (i.e., how its arguments/objections are themselves
(counter-)argued). A simple version of such a measure was implemented in the
hypertext system SYNVIEW [9]. The KB server Co4 [4] had protocols based on
peer-reviewing for finding consensual knowledge; the result was a hierarchy of
KBs, the uppermost ones containing the most consensual knowledge while the
lowermost ones were the private KBs of contributing users. Establishing "how
consensual a belief is" is more flexible in a cbwoKB: i) each user can design his
own global measure for what it means to be consensual, and ii) KBs of consensual
knowledge need not be generated.

110

 A global measure of how interesting a statement is should be based on its type (if
it has one, e.g., observation, deduction, assumption, preference, ...), on its
relations (especially those arguing for/against it or representing its originality,
acceptance, ...), and on the usefulness of the authors of these relations (see below).

 A global measure of the usefulness of a statement should exploit (at least) the
above two measures.

 A global measure of the usefulness of a user U should incorporate the global
measures of usefulness of U's statements and, to encourage participation in
evaluations, the number of objects he evaluated.

Given these comments, the motivation for enabling end-users to adapt the default
measures is clear. However it is done, taking into account the above cited elements
should encourage information providers to be careful and precise in their
contributions and give arguments for them. Indeed, unlike in traditional discussions or
anonymous reviews, careless statements here penalize their authors. This may lead
users not to make statements outside their domain of expertise or without verifying
their facts. (Using a different persona when providing low quality statements does not
seem to be a helpful strategy to escape the above approach, since this reduces the
number of authored statements for the first persona.) For example, when a belief is
objected to, the usefulness of its author decreases and he is therefore led to deepen the
argumentation structure on its belief or remove it.

[6] describes a "Knowledge Web" to which teachers and researchers could add
"isolated ideas" and "single explanations" at the right place, and suggests that this
Knowledge Web could and should "include the mechanisms for credit assignment,
usage tracking and annotation that the Web lacks" (pp. 4-5). [6] did not give hints on
what such mechanisms could be. This article gives a basis for them.

6 Conclusion

This article aimed to show that a cbwoKB - and hence a cbwoKB based ontology
repository - is technically and socially possible, and - in the long term or when
creating a new KB for general knowledge sharing purposes - provides more
possibilities, with on the whole no more costs, than the mainstream approach [14][1]
where knowledge creation and re-use involves searching, merging and creating (semi-)
independent (relatively small) ontologies. However, research on these two approaches
are complementary: i) results on knowledge extraction or merging may ease the
creation of a cbwoKB, ii) the results of applying these techniques with a cbwoKB as
one of the inputs would be better and they would not be lost if stored in a cbwoKB.

This article showed that a cbwoKB can be collaboratively built and evaluated
without a selection committee and without forcing the users to discuss or agree on
terminology and beliefs. However, to guide users into collaboratively representing
knowledge in a normalized and organized way, and hence inserting it "at the right
places", other elements are also needed: expressive and normalizing notations,

111

methodological guidance, a large general ontology, and an initial cbwoKB core for the
application domain of the intended cbwoKB. WebKB-2 proposes research results for
all these elements. One explored application domain is the "Semantic Web related
techniques".

7 References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on
Semantic Web and Information Systems, 5, vol. 3, pp. 1-22 (2010)

2. Casanovas, P., Casellas, N., Tempich, C., Vrandecic, D., Benjamins, R.: Opjk and diligent:
ontology modeling in a distributed environment. Artificial Intelligence Law, 15, vol. 2, pp.
171-186 (2007)

3. Chein, M., Mugnier, M.-L.: Positive nested conceptual graphs. In: ICCS 1997, LNAI 1257,
pp. 95-109 (1997)

4. Euzenat, J.: Corporate memory through cooperative creation of knowledge bases and hyper-
documents. In KAW 1996, pp. (36)1-18 (1996)

5. Euzenat, J., Mbanefo, O., Sharma, A.: Sharing resources through ontology alignment in a
semantic peer-to-peer system. In "Cases on semantic interoperability for information systems
integration: practice and applications", pp. 107-126 (2009)

6. Hillis, W.D.: Aristotle (the knowledge web), Edge Foundation, Inc., 138 (2004)
7. Lee, J., Park, J., Park, M., Chung, C., Min, J.: An intelligent query processing for distributed

ontologies. Systems and Software, 83, vol. 1, pp. 85-95 (2010)
8. Lewen, H., Supekar, K.S., Noy, N.F., Musen, M.A.: Topic-specific trust and open rating

systems: An approach for ontology evaluation. In EON 2006 at WWW 2006.
9. Lowe, D.: Co-operative structuring of information: The representation of reasoning and

debate. International Journal of Man-Machine Studies, 23, pp. 97-111 (1985)
10. Martin, Ph., Eboueya, M.: For the ultimate accessibility and re-usability. Chapter 29 (14

pages) of the Handbook of Research on Learning Design and Learning Objects: Issues,
Applications and Technologies, IGI Global (2008)

11. Martin Ph.: Exploitation de graphes conceptuels et de documents structurés et hypertextes
pour l'acquisition de connaissances et la recherche d'informations. Ph.D. thesis (378 pages),
University of Nice - Sophia Antipolis, France (1996)

12. Noy, N.F., Tudorache, T.: Collaborative ontology development on the (semantic) web. In:
AAAI Spring Symposium on Semantic Web and Knowledge Engineering (SWKE 2008)

13. Palma, R., Haase, P., Wang, Y., d'Aquin, M.: Propagation models and strategies. Deliverable
1.3.1 of NeOn - Lifecycle Support for Networked Ontologies; NEON EU-IST-2005-027595
(2008)

14. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelligent
Systems, 21, vol. 3, pp. 96-101 (2006)

15. Sowa, J.: Theories, models, reasoning, language, and truth.
http://www.jfsowa.com/logic/theories.htm (2005)

112

Using extended metadata model OMV and
metrics in OntoLP Portal

Anderson Bestteti, Larissa A. de Freitas, and Renata Vieira

College Computer, PPGCC,
Ipiranga Avenue, 6681, Partenon, Building 32, Porto Alegre, RS, Brazil
{anderson.bestteti,larissa.freitas,renata.vieira}@pucrs.br

http://www.inf.pucrs.br/~linatural/

Abstract. This paper describes the application of OMV-R, an extension
of the OMV metadata model for describing ontologies. The motivation
is to help users searching for ontologies and ontology research related
resources for reuse. In our extension we included information about on-
tology evaluation and evolution and we also propose more elaborated
ways for describing ontology metrics. The extended model was applied
to a web portal for Portuguese ontologies, OntoLP. The model was im-
plemented and evaluated through questionnaires answered by users, re-
searchers and ontology engineers.

Key words: Metamodel, Metrics, Ontology Repository, Ontology Reuse

1 Introduction

One of the main features of ontologies is to enable humans and machines to
communicate through semantic formalization. With this purpose, ontologies are
used in many areas of Computer Science, such as artificial intelligence, database
and software engineering. It has been also the key component for information
systems in a increasing variety of domains, well-known examples are the areas
of biology, geography and law.

The Semantic Web Project contributed for popularization of ontology as an
artifact to build the knowledge representation, shared and reused. With the reuse
of ontologies costs can be reduced, mainly in development phase.

As presented in [9], the reuse of ontologies can be seen from two main points:
one is to create, extend, specialize and adapt an ontology to build a new one;
the other is to combine different ontologies in a single one.

A first problem for reuse is ontology search. Usually, repositories offer poor
navigation interfaces [2]. The lack of good quality documentation about available
ontologies also contributes to this difficulty. The Metadata models that describe
ontologies have been proposed to deal with these problems[6]. The use of a
standard vocabulary for ontologies is understood as a basic requisite for a good
description of ontologies on the Web.

In this paper we extend and evaluate the previously proposed OMV meta-
data model through its application to a portal for Portuguese ontologies. The

113

2 Anderson Bestteti, Larissa A. de Freitas, Renata Vieira

motivation is to help users searching for ontologies and ontology research related
resources.

The paper is organized as follows: in Section 2 we present our extension which
we call OMV-R; in Section 3 we describe a set of ontology metrics that we use
in the description of the ontologies in our portal; in Section 4 we discuss the
evaluation of the model; finally, in Section 5 we show the conclusion and future
works.

2 The extended metadata model OMV-R

Our extension of the OMV model and its application to a portal aims to assist
users in the process of finding out ontologies for reuse.

The original model proposed by [8] does not include information about on-
tology evaluation and evolution. We included those elements in the model and
we also propose more elaborated ways for describing ontology metrics.

According to [13], metrics are useful to help evaluate ontologies during the
build and application phase, enabling a quick and simple understanding about
what are being modeled through these structures and facilitating the control of
its future evolution. This also holds for ontology reuse.

In [10] a study is performed about the maturity of the current process,
methodologies and tools focused on ontology reuse. Their strengths and require-
ments are identified.

Specifically on the evaluation of ontologies, [16] presents a methodology called
Requirements-Oriented Methodology for Evaluation Ontologies (ROMEO). This
methodology propose a set of criteria for ontology evaluation. Inspired by these
previous works, we considered that ontology evaluation is another important
feature in the ontology selection process.

As OMV does not provide such information so important to enable reuse, we
extended it with new classes as shown in Figure 1.

2.1 Description of the new classes, properties and relations

This section will present the classes, properties and relations such as were added
to metadata model OMV.

OntologyEvaluation Class: this class represents the evaluation of an ontology.
The properties of this class are:

– evaluationComments: free text that can be used to comment the evaluation
criteria;

– evaluationDate: date when the evaluation was made;

– evaluationValue: value assigned to evaluation criteria.

114

Using extended metadata model OMV and metrics in OntoLP Portal 3

Fig. 1. Extended OMV metadata model .

EvaluationCriteria Class: this class represents the evaluation criteria used
to evaluate the ontology. In our implemented model, this class has an evaluation
criteria set as discussed in [16]. The properties of this class are:

– criteriaQuestion: question describing the evaluation criteria;
– criteriaType: define whether a question accept a textual or numeric answer.

Metric Class: this class represents metrics. Such metrics can be used to score
an ontology, assigning a quantitative value, in order to assist users to select
ontologies. In OMV-R there are 20 implemented metrics, which will be discussed
in the next subsection. The properties of this class are:

– name: metric name;
– usages: free text to describe and guide the user how to use the metric as well

how the metric results may be interpreted.

OntologyMetric Class: this class represents instances of the calculated met-
rics of an ontology. One or more metrics may be assigned to an ontology, they
can help users to select ontologies on the basis of different points of view. The
properties of this class are:

– comments: free text to give more information about a metric;
– creationDate: date when the metric was calculated;
– value: value assigned to a metric.

115

4 Anderson Bestteti, Larissa A. de Freitas, Renata Vieira

Project Class: this class represents research or commercial projects that use a
given ontology or a set of them. The properties of this class are:

– creationDate: date of the project’s beginning;
– description: free text to describe the project’s objectives and artifacts pro-

duced by them;
– name: the project’s name.

Relations: here we present the relations among these new classes.

– evaluatedOntology: relation between ontologies with their respective ratings;
– isBasedOn: reference to another ontology which was used in its construction,

this reference allows to identify the reuse level that one ontology has, based
on the quantity of references;

– hasEvaluator: reference to a research group or enterprise responsible by on-
tology evaluation;

– evaluationCriteria: reference to an evaluation criteria associated to an ontol-
ogy;

– hasSponsor: reference to the institution sponsoring the project;
– usedByProject: reference to the project that uses an ontology;
– hasCreator: reference to the research group or institution that has developed

the metric;
– usedMetric: reference to the metric assigned to a given ontology.

From the adaptation made, the OMV-R supports now the ontology eval-
uation description according to the methodologies proposed by [10], [16] and
[13]. Another contribution is to allow OMV-R to store new metrics whenever
is needed. These metrics may be used to evaluate an ontology over different
points of view. Finally, it is expected that the extended model OMV-R provides
a greater flexibility in the search of ontologies, as it offers to users additional
information about reuse.

In the next section we described the set of implemented metrics.

3 Implemented Ontology Metrics

The model has been extended to accommodate a more elaborated description
through metrics. In our application of the model we have implemented ways of
calculating a set of metrics to describe the ontologies in the repository. The choice
of metrics were based on a detailed systematic review of the literature of ontology
metrics. Following the systematic review their presentation was standardized in
a common representation formalism, where C is used for classes, CS is used for
set classes with subclasses, CR is used for set of root classes, CL is used for set
of leaf classes, HC(CRj , CLi) for hierarchy of classes where CRj is a subclass
of CLi, prop for the function that relates the classes in a non-hierarchy and att
for the function that relates classes with literal values (string), I for instances
and inst(C) for the function of instantiated classes [13] [12].

116

Using extended metadata model OMV and metrics in OntoLP Portal 5

Besides, we use Count for count, SuperClass for superclass function, SubClass
for subclass function, Max for maximum (MaxDepth and MaxWidth), Depth
for depth, Width for width, Avg for average (AvgDepth, AvgMaxAvg, AvgWidth,
AvgAttClass, AvgPropClass, AvgPClass, AvgCRC, AvgCRCL, AvgCIC,
AvgIC) and StdDev for standard deviation (StdDevIC).

All chosen metrics presented result in numeric values and their calculation
could be implemented. The metrics were separated in three groups as follows:

1. Group 1 is simply the count of the basic elements of an ontology (classes,
properties, and instances), metrics 1 to 7.

Number of root classes [15] [1]

Count(CR) = |CR| (1)

where: |CR| is the set cardinality

Number of leaf classes [15] [1] [14]

Count(CL) = |CL| (2)

where: |CL| is the set cardinality

Number of classes [7] [1] [14]

Count(C) = |C| (3)

where: |C| is the set cardinality

Number of properties (attributes) [1]

Count(att) = |att| (4)

where: |att| is the set cardinality

Number of properties (relations) [1]

Count(prop) = |prop| (5)

where: |prop| is the set cardinality

Number of properties [7] [1] [14]

Count(att) + Count(prop) (6)

Number of instances

Count(I) = |I| (7)

where: |I| is the set cardinality

2. Group 2 represents the depth and width of the structure, metrics 8 to 12.

117

6 Anderson Bestteti, Larissa A. de Freitas, Renata Vieira

Maximum depth [7] [1] [14]

MaxDepth(HC) = (8)

the major ontology depth counted from each
root class (CRj)

Average depth [1] [4] [15]

AvgDepth(HC) = (9)

the average ontology depth added from all root classes (CR)
by counted from each leaf class (CLi)

Average maximum depth to average depth [14]

AvgMaxAvg(HC) = MaxDepth(HC)/AvgDepth(HC) (10)

Maximum width [1]

MaxWidth(HC) = (11)

the major ontology width counted from each
class with subclass (CSk)

Average width [1]

AvgWidth(HC) = (12)

the average ontology width added from all classes with subclasses (CS)
by counted from each class with subclass (CSk)

3. Group 3 represents the calculation of simple averages and standard deviation
from combinations of the basic elements, metrics 13 to 20.

Average number of properties (attributes) to total number of classes [1]

AvgAttClass = Count(att)/Count(C) (13)

Average number of properties (relations) to total number of classes [1] [14]

AvgPropClass = Count(prop)/Count(C) (14)

Average number of properties to total number of classes [1]

118

Using extended metadata model OMV and metrics in OntoLP Portal 7

AvgPClass = (Count(att) + Count(prop))/Count(C) (15)

Average number of leaf classes to total number of classes [1] [14] [13]

AvgCRC = Count(CR)/Count(C) (16)

Average number of leaf classes to number of classes root [14]

AvgCRCL = Count(CR)/Count(CL) (17)

Average number of classes populated to total number of classes [13]

AvgCIC(HC) = Count(inst(C))/Count(C) (18)

Average of the total number of instances to total number of classes

AvgIC(HC) = Count(I)/Count(C) (19)

Standard deviation of the total number of instances to total number of
classes [13]

StdDevIC(HC) =
√∑

(Count(inst(C))−AvgIC(HC))2/Count(I)

(20)

The AvgIC(HC) and Count(I) were calculated and used in StdDevIC(HC).
It is not directly referenced in papers obtained in the systematic review.

Note that OMV documentation refer to four metrics only: number of class,
number of property, number of individuals and number of axioms.

4 Application evaluation

OntoLP Portal1 offers ontologies and ontology research related resources, with
special preference to ontologies written in Portuguese language. At Home link
the objectives of the portal are shown, whilst the link Resources list ontologies
and related works. The link About contains information referring to the research
group involved in this project. Through the Contact link others research groups
in the field can send their works and suggestions. Finally, the link Links shows
researches groups that have been colaborated directly or indirectly with the
OntoLP Portal as well as events related with ontology research.

An ontology search was performed just to build the repository. We conducted
searches in Google 2 specifying the type of query (e.g. “field filetype: owl”), in
Swoogle 3, in OntoSelect 4 and pages of projects and research groups work-
ing with the subject. Also we announce the OntoLP portal in several Brazilian

1 http://www.inf.pucrs.br/˜ ontolp/index.php
2 http://www.google.com.br/
3 http://swoogle . umbc.edu /
4 http://olp.dfki.de/ontoselect/

119

8 Anderson Bestteti, Larissa A. de Freitas, Renata Vieira

research lists and organized an event with the intention of receiving these re-
sources.

As a result we find resources in different domains such as ecology, nanotech-
nology, art, curriculum, emotion, privacy, network of scientific knowledge, smart-
phones, music and stimulus equivalence. Today the OntoLP portal has 25 ontolo-
gies. Note that the currently portal does not use any advanced structure, such
as a metamodel, to store the descriptions of ontologies. Such descriptions were
manually built and hard coded in HTML, which are stored in the file system
on the Web server. In order to improve the current services of OntoLP portal,
a new prototype application was developed that uses the OMV-R to keep the
descriptions of ontologies. The next subsection will take a look deeper how this
new version of OntoLP portal was developed.

4.1 Infrastructure

A tool has been developed in order to automate the receiving process. This
tool reads the ontology and includes information about ontology metrics. It has
also another interface for the inclusion of other metadata, to be used in the
description of ontologies in the OntoLP Portal, that corresponds with instances
of OMV-R. Ontologies are thus received through a submission form. Figure 2
shows the flow of information during the ontology reception process.

Fig. 2. Flow to store an ontology into OntoLP Portal.

Besides the ability to create OMV-R’s instances, the tool offers others ser-
vices such as information retrieval of the ontologies, ability to create and retrieve
ontology evaluation instances as well as the metrics values for each OMV-R in-
stance that represents a description of the ontology. The recovery of information
from ontologies is made through a set of methods that read data from OMV-R
and then, record the information on a XML file wich will be used by presen-
tation layer of the prototype application. Therefore, this XML file works like a
communication area between OMV-R ontology and end user interface.

Finally, the tool uses the Jena’s SPARQL query engine to implement the
advanced search service in the OntoLP Portal. The query is performed on the
OMV-R, specifically over the Ontology class to retrieve all the ontologies that
match the user’s filter.

120

Using extended metadata model OMV and metrics in OntoLP Portal 9

Figure 3 presents the OMV-R metric instances for the stored ontologies.
Notice that the OntoLP Portal prototype application can be accessed through
following link: http://www.ontolp.com.br. Both versions of portals are available
for readers to discover the differences between portals (take a look at previous
page on footnote for the URL of the current portal).

Fig. 3. Portal OntoLP interface showing an instance of OMV-R.

4.2 Evaluation

We applied two questionnaires to evaluate the adaptations made to the portal
which follows the new proposed model.

The goal of the first questionnaire was to evaluate the opinion of a users’
group, researchers and engineering of ontologies about the usefulness of metrics
in specific repositories, in this case in OntoLP portal.

In the first phase, the questionnaire (in print format) was applied to people
in national workshop about ontologies. In the final phase the questionnaire (in
digital format) was applied to visitors of the OntoLP portal. The questionnaire
was available for a month (December 6, 2009 until January 6, 2010).

The final result showed that 76 % respondents have developed ontologies, 83
% have searched for ontologies written in English, Portuguese, or Spanish. The
language most cited was English and Portuguese was in the second position. The
sample consisted of 14 PhD, 11 MSc and 5 senior experts. At last, ontologies in
many domains were mentioned.

121

10 Anderson Bestteti, Larissa A. de Freitas, Renata Vieira

We observed that there was no preference regarding groups 1, 2 and 3, their
usefulness was better appreciation as a whole. Most people consider the use of
metrics important for the portal.

The respondents commented about the lack of more specific metrics (total
number of relations’ types, where such relations would be “ is-a”, “ part-of”)
and about the lack of the presentation in percentages the results (percentage of
classes that did not have superclasses). These suggestions will be considered as
future work.

The goal of the second questionnaire was to get impressions about the new
services of the OntoLP Portal such as description and retrieval of ontologies
based on the OMV-R metadata.

Here, the sample was formed by 19 respondents. They were instructed to visit
the OntoLP Portal and to evaluate the new services such as ontology submission
and search. Next, the respondents were oriented to compare the services of the
current version of the portal. When asked whether these new services have eased
the ontology search process, about 58% of respondents agreed, 26% remained
neutral and about 15% disagreed.

Despite some disagreement about how easy is to locate ontologies in the
new OntoLP Portal, about 95% of respondents believe that the new ontology
submission and search services are better than the original one.

In addition to the two close questions about the satisfaction and improvement
about the ontology search services, the respondents were conducted to comment
referring to other information that could be added to the metadata model OMV-
R. About 25% of respondents have contributed with suggestions; 32 % said that
the new set of the model’s information was sufficient or reasonable; and 36 %
didn’t answer.

The suggestions are related mainly with the ontology domain, and this infor-
mation is the best way to locate ontologies. Other respondent claimed that the
new portal should offer information about the relationship among ontologies, as
evidence: “At first glance I would say that at some point we will need a hierarchy
of ontologies (when there are more than 20 or 30 ontologies) and some mechanism
to relate them (meta-ontology)”. Notice tha both questionaries can by accessed
through the following links: http://www.inf.pucrs.br/˜ontolp/questionario.php
(for metric’s questions) and http://www.ontolp.com.br/questionarioOMVR.php
(for metamodel and prototype application’s questions)

5 Conclusion and Future Work

This paper presented an extended model based on OMV, which is called OMV-
R. The new model includes key ontology metrics identified through literature
review. The model was applied to OntoLP portal which aims to maintain and
distribute Portuguese resources. The model is used for the description of the
resources, and was also useful as a basis for new search and retrieval services.
Finally, this paper discussed the surveys performed to evaluate the model, the
new portal and the use of metrics, where the objective was to assess with the

122

Using extended metadata model OMV and metrics in OntoLP Portal 11

community the benefits and contributions of the model for ontology description
and location as well as the process of reuse of such resources.

We hope to have contributed with ideas for describing ontologies that can
be included in previously proposed standards. We have also shown its usefulness
for the development of software that can help researchers and engineers to find
and inspect available ontologies in an organized and efficient way.

Potential future work are: (i) adaptation of the OMV-R API to work with
the OMV-R model stored in commercial database as well as free ones; (ii) the
development of Web services for distributed applications; (iii) improving the ad-
vanced search interface of the new OntoLP Portal, in order to allow users query
any property of the metamodel through free-text. Nowadays only three proper-
ties have been added to advanced search interface; (iv) building mechanisms for
visualization of ontologies described in the metadata model OMV-R.

References

1. Cross, V., Pal A.: Metrics for ontologies. In: Annual Meeting of the North American
Fuzzy Information Processing Society, pp. 448-453, (2005).

2. Ding, L. Finin, T. Joshi, A. Pan, R. Cost, R. S. Peng, Y. Reddivari, P. Doshi, V.
Sachs, J.: Swoogle: A Semantic Web Search and Metadata Engine. In: Proceed-
ings of the thirteenth ACM international conference on Information and knowledge
management, pp. 652-659, (2004).

3. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P.:
OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems,
v. 16, pp. 38-45, Mar./Apr., (2001).

4. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology eval-
uation and validation. In: The Semantic Web: Research and Applications, pp. 140-
154, (2006).

5. Gruber, T. R.: Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human Computer Studies 43, 907-928 (1995).

6. Hartmann, J.; Bontas, E. P.; Palma, R.; Gmez Prez, A.:Demo - Design Environment
for Metadata Ontologies. In: The Semantic Web: Research and Applications, pp.
427-441, (2006).

7. Lozano-Tello, A., Gmez-Prez, A.: Ontometric: A method to choose the appropriate
ontology. Journal of Database Management 15, 1-18 (2004).

8. Palma, R.; Hartmann, J.; Haase, P.: OMV Report 2.4 - Ontology Metadata Vocab-
ulary for the Semantic Web. Technical Report, p. 94, (2008).

9. Pinto,H. S, Martins J. P.: Reusing Ontologies. In: AAAI 2000 Spring Symposium
Series, Workshop on Bringing Knowledge to Business Processes, pp. 77-84, (2000).

10. Simperl, E.: Reusing Ontologies on the Semantic Web: A Feasibility Study. Data
and Knowledge Engineering, v. 68-10, pp. 905-925, October, (2009).

11. Smith,M. K., Welty, C. , McGuinness,D. L.: OWL Web Ontology Language Guide:
W3C Recommendation 10 February 2004.

12. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A. P., Aleman-Meza, B.: OntoQA:
Metric-based ontology quality analysis?. In: IEEE Workshop on Knowledge Acqui-
sition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowl-
edge Sources, p. 9, (2005).

123

12 Anderson Bestteti, Larissa A. de Freitas, Renata Vieira

13. Tartir, S., Arpinar, I.B.: Ontology Evaluation and Ranking using OntoQA. In:
First IEEE International Conference on Semantic Computing, pp. 185-192, (2007).

14. Yang, Z., Zhang, D., Ye, C.: Evaluation Metrics for Ontology Complexity and
Evolution Analysis. In: IEEE International Conference on e-Business Engineering,
pp. 162-170, (2006).

15. Yao, H., Orme, A.M., Etzkorn, L.: Cohesion metrics for ontology design and ap-
plication. Journal of Computer Science 1, 107-113 (2005).

16. Yu, J. Thom, J. A. Tam, A.: Requirements-Oriented Methodology for Evaluating
Ontologies. Information Systems, v. 34-8, pp. 766-791, December, (2009).

124

Ontology Repository for User Interaction

Martins Zviedris1

1 Institute of Mathematics and Computer Science, University of Latvia, Raina bulv. 29,

Riga LV-1459, Latvia
Martins.Zviedris@Lumii.lv

Abstract. The systematization and the interaction with ontologies are problems
that deserve more attention. One of the key aspects is that ontology repositories
should also work as the first step in a data interaction process for end-users, not
only as a collection of ontology schemas. We propose a novel systematization
of similar domain ontologies described by a high-level abstraction domain
ontology that could be used as a domain ontology repository and access point to
gather instance data.

Keywords: Ontology Systematization, Ontology Interaction

1 Introduction

Data systematization, representation and accessibility are key factors for the data
usage. In the Semantic Web, the state of art for the data representation is ontology and
currently ontology repositories are used to store collections of ontology schemas.
Main disadvantage is that ontology repositories only allow to access ontology
schema. Thus, this leads to an effect that ontologies are developed in an isolated way,
as there is not provided access to the real data that would motivate to interlink them.

First, we propose that an ontology repository should contain link to instance data.
Second we propose that it would be better to organize a repository around specific
domain and group domain ontologies by additional domain specific meta-information.
Added meta-information should be organized by a high-level abstraction domain
ontology, described in more detailed in section 3. Thus, it would be easier to find
similar onotologies and define ways to merge them together. Third, domain
repositories would also work as a first step in data interaction for a domain expert user
or an intelligent agent. The user would use the repository to select ontologies that
contain the data of interest and use selected ontologies to construct relevant data
queries. The repository thus becomes a bridge towards the real data.

2 Practical Experience and Proposed Solution

In practice we have encountered a problem, where we had to develop an ontology
for medical researchers that describes data from different disease registries [1]. Since

125

instance data was originally stored in SQL databases then we had to work with SQL-
like ontologies; we will preset simple ontology examples below. The role of
ontologies was to integrate eleven disease registries and to allow medical researchers
to use ontologies as access point to the real data. Thus there was no need for
elaborated ontology mechanisms. The only goal was to use ontologies to enable
medical researchers to sort through vast amounts of data from registries without
programmer’s assistance.

A naïve approach is to merge all the registries into single, large ontology that could
be stored in the data access point. We have successfully implemented the naïve
approach. However, in this case medical researchers hardly comprehend the resulting
ultra-complex ontology. The naïve approach needs improvement, as understandability
because of ontology is crucial for medical researchers to use the ontology for actual
data selection.

Based on the medical domain we will describe a more elaborate solution. The
solution involves interaction of two steps. In the first step, a medical researcher has to
choose registries that interest him. In the second step, he has to select and obtain data
from selected registries. As each registry can also be perceived as an ontology then
we need to develop a disease domain repository from where the medical researcher
selects ontologies that interests him. So, in the first step the medical researcher selects
registries (ontologies) from high-level abstraction disease ontology that are merged
into single ontology. In the second step, the end-user can interact with data better as
ontology consists of a smaller number of classes and most of them are of end-user’s
interest. The main idea in this approach is to develop a high abstraction level ontology
that represents features from all registries. As a result, the end-user in the first step
can select registries (ontologies) more conveniently and can further work with single
ontology containing the needed data.

3 A Detailed Example of Medical Domain

We start with a requirement to integrate different medical disease registries into single
integrated registry. Each registry contains patient’s data. We propose that all registries
should be stored in a medical domain repository. Also, it is required that ontology
records contain links to instance data. As for medical researchers it is often necessary
to work with several ontologies at a time then we also propose that these ontologies
need to be organized in a more elaborate way using a high-level abstraction medical
disease registries ontology.

To better understand a high-level abstraction ontology, we will build it from
medical domain examples. We need to integrate two simplified registries – diabetes
registry depicted in Fig 1. and cancer registry depicted in Fig 2. In practice these
registries contained also other information connected to simplified solution classes
and consisted of about 10 classes and about 20 enumerated classes used for
classification.

By analyzing depicted registries we can identify similar structure in them. Each
registry contains such general concepts as person, disease information, disease details
and disease cure. A question arises whether these similarities can be used to develop a

126

high-level abstraction ontology. As we need to develop a high-level ontology that is
used in a repository for ontology selection then we need to consider only those
concepts that can ease selection process. As concept “person” does not contain
information useful for ontology selection it should not be considered for a high-level
ontology. Still, it could be useful to mark person concept as a concept that can be used
to merge registries, thus, ontologies merging could be done at least semi-automatic.

Fig. 1 Simplified diabetes registry

Fig. 2 Simplified cancer registry

We can identify a pattern that can be described as a disease has a treatment and an
examination. The pattern is general and can be consider as a high-level abstraction
ontology. The pattern can be depicted as ontology in Fig. 3. (additional information
about the treatment and the examination may be added).

Fig. 3 Common disease ontology

Such pattern was discovered in eleven registry ontologies that ware developed for
medical registries. We can see that the pattern ontology is very simple and easy to
grasp for the end-user. In addition, most medical disease ontologies can be described
as an instance of this ontology. Still, this pattern ontology lacks meta information
about actual registries and where one can find instance data and thus link to it. Also, it
could be possible that data is stored in more than one place; for example, each clinic
could have own cancer registry and specific disease details. We add links between the
high-level abstraction ontology instances and corresponding ontologies. Links are
also added towards real data and contain information about, for example, how long

127

data is gathered, thus links allows additional selection possibilities. Schematically
structure is depicted in Fig 4.

Fig. 4 Connection between ontology levels

We will sketch how a medical researcher could gather relevant data about cancer
and its treatment possibilities using the proposed solution. We will not describe a
specific way to query ontology as it can be done through SPARQL or more preferably
by a graphical query language [2, 3]. Firstly, a medical researcher connects to a
disease domain repository and queries high-level ontology depicted in Fig. 3. He
restricts that he is interested in disease with name = “Cancer” and all corresponding
treatments. As a result he gets instance pairs of cancer and corresponding cancer
treatment and link information to ontologies that contain instance data. At this point
the medical researcher can further restrict registries that interest him, for example, he
could be interested only in registries that gather data at least 10 years. If he selects at
least two registries, for example, the Baltic cancer registry and the England cancer
registry then ontologies from both registries are merged into single ontology. This can
be achieved using information that both ontologies contain similar concepts “person”
and that in both ontologies is present abstract Cancer class as super class of specific
Cancer classes that contain data. This ontology is presented to a medical researcher,
where he can gathers clinical data for further analysis.

4 Related Work

From technical point of view, OWL2.0 allow to use punning, where an object can be
represented as a class. Still, metadata addition to ontology does not solve the problem
of how to group similar domain ontologies together for further interaction. Most
existing ontolory repositories just collect ontologies and allow to reuse ontologies.
For example [4] does not give possibility for further interaction with collected
ontology data that is needed for common users. They even do not collect links to
existing data.

128

5 Results and Future Work

In practice, we have designed and implemented the naïve approach with six different
disease registries [1] integrated into single ontology. To allow medical researchers
query data, we have developed and implemented a graphical query language [2].
After implementing the prototype we gathered user feedback to evaluate our work.
Most valuable feedback that we got was that ontology was too ultra-complex for
medical researchers. Also, it was relatively easy to produce queries in ontology part,
with witch a researcher was familiar with. Other valuable feedback was that medical
researchers are interested in registries meta information, for example, how long data
has been gathered.

It would be important to practically implement and test specific domain repository
with access to ontologies that contain real data. The proposed approach needs to be
developed in more details to interlink between an ontology repository and ontologies
that contain real data. Interesting problem also would be to find whether there should
be predefined ontologies for specific diseases that could be configurable for each
registry that contains such disease data and such ontology could be used for mush-up.
As we have only developed the theoretical approach for medical domain it is
important to go further into other domains and see possibility of a high-level
abstraction ontology approach. We should mention that such domain repositories
would be useful for intelligent agents as they could find links to similar data in one
place.

Acknowledgements

I would like to thank prof. Guntis Barzdins for valuable discussions and prof. Karlis
Podnieks for useful ideas. Also I would like to thank Arturs Sprogis and Renars
Liepins for valuable assistance.

References

1. Barzdins G., Liepins E., Veilande M., Zviedris M., Ontology Enabled Graphical Database
Query Tool for End-Users, Selected papers from DB&IS'2008, Hele-Mai Haav (Eds.),
Frontiesrs in Artificial Intelligence and Applicatons series, IOS Press, 2009. 187:105--116

2. Barzdins, G., Rikacovs, R., Zviedris, M.: Graphical Query Language as SPARQL Frontend.
In Grundspenkis, J., Kirikova, et. al. (Eds.), Local Proceedings of 13th East-European
Conference (ADBIS 2009), pp. 93--107. Riga Technical University, Riga. (2009)

3. Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., Yin, A., Wu, Z.: Towards a
semantic web of relational databases: A practical semantic toolkit and an in-use case from
traditional chinese medicine. In Cruz, I.F., et.al, eds.: 5th International Semantic Web
Conference. LNCS, vol. 4273, pp. 750--763. Springer (2006)

4. N. F. Noy, N. H. Shah, P. L. Whetzel, et. al. BioPortal: ontologies and integrated data
resources at the click of a mouse. Nucleic Acids Research, 2009

129

Evaluation Framework for Ontology Development and
Management Methodologies

Dionisis D. Kehagias, Dionysia Kontotasiou, and Dimitrios Tzovaras

Centre for Research and Technology Hellas,
Informatics and Telematics Institute,

57 001, Thermi, Greece,
diok@iti.gr, dkonto@iti.gr, dimitrios.tzovaras@iti.gr

Abstract. Based on the IEEE 1074-1995 standard for software development pro-
cess we define a set of complement criteria for the evaluation of existing ontology
development and management methodologies. We use this evaluation framework
in order to benchmark the most well known approaches for developing ontologies
from scratch, as well as reusing ontologies that are stored in ontology repositories.
The result of the evaluation process is to identify the shortcomings of existing on-
tology development and management methodologies and validate the use of the
aforementioned criteria for the establishment of a generic evaluation framework.
Moreover, the conducted evaluation procedure reveals the degree of conformance
of the benchmarked methodologies to a set of standardized criteria. In order to in-
clude the newly introduced evaluation criteria whose purpose is to support more
ontology-specific evaluation aspects, we extend the evaluation framework intro-
duced in the Ontoweb project by also adding nine additional methodologies.

1 Introduction

Ontology development and management are two knowledge engineering processes that
are required either for constructing an ontology or an ontology network from scratch or
reusing existing ontologies. Even though many visualization support tools that are avail-
able today facilitate the various steps of the ontology lifecycle, the core development of
an ontology remains a manual task that requires good knowledge of the domain to be
modeled, as well as good modeling skills and experience. To this end a deep knowledge
of existing methodologies about ontology management and development are necessary
for the adoption of the best practices available in the market.

This paper aims at the provision of an in-depth review of the most common method-
ologies for ontology development and management by introducing a set of evaluation
criteria to enable benchmarking of the existing methodologies. The proposed set of
criteria is based on the IEEE 1074-1995 standard for software development process
[1] that defines the main processes involved in the administration, preparation, devel-
opment and integration of a software project. Various ontology construction methods
for building single ontologies from scratch are presented in [2], where it is noted that
none of them is the most adequate for all situations; instead, each one has its own use,
depending on the application’s specificity. Our work extends the IEEE 1074-1995 in
order to form the basis for the development of a concrete methodological approach and

130

a set of guidelines for ontology authoring which can be used and applied as a set of
evaluation criteria for new ontologies as well.

In particular the paper focuses on the introduced criteria by providing a thorough
analysis of their impact on existing methodologies. The new evaluation criteria are
based on practical observation of ontologies from real repositories and a set of practical
guidelines about the establishment of an ontology evaluation and refinement best prac-
tice. By extending the IEEE standard we conduct benchmarking of existing ontology
development and management methodologies in order to identify potential inefficien-
cies on existing methodologies. Our evaluation framework extends the one introduced
by the Ontoweb project [3] by adding nine additional methodologies. An evaluation
process is conducted in order to investigate the degree in which the existing methodolo-
gies provide support of the evaluation criteria presented in this paper.

2 The IEEE Software Development Standard

The set of criteria used for the definition of our evaluation framework is based on the
IEEE 1074-1995 standard for software development process. According to the IEEE
definition [1], software is ”computer programs, procedures, and possibly associated
documentation concerned with the operation of a data processing system; e.g. compil-
ers, library routines, manuals, and circuit diagrams”; ontologies are part of software
products. In order to construct an ontology similar processes are required, such as de-
sign of class hierarchies, development of the ontology, validation of an ontology by
executing a reasoner and generation of documentation. Based on these similarities, the
proceeses involved to the creation of an ontology from its conceptualization to the de-
velopment and documentation can be described by the IEEE standard after its adapta-
tion to the specific characteristics of ontology development.

According to this standard any software development process is broken down in
processes. We adapt each process to existing ontology development methodologies and
propose a set of applied criteria. The purpose of the set of defined criteria is to drive
the evaluation procedure for different ontology development and management method-
ologies. These criteria are intended to stand as complementary elements to the IEEE
1074-1995 standard extending its application to the ontology development and man-
agement processes. The IEEE 1074-1995 standard defines the following processes for
software.

∙ Project management processes. These processes adhere to the procedure required
for setting up a software development project. Their purpose is to ensure the right
level of management throughout the entire project life cycle. They include activi-
ties related to project initiation (such as participants, scheduling, etc.), project mon-
itoring and control, and quality management. The activities proposed by the IEEE
standard for these processes are applicable to any software product and therefore
they are recommendable to be applied in ontology development. Ontology manage-
ment activities include scheduling, control and quality management. The schedul-
ing activity identifies the tasks to be performed, their arrangement, and the time and
resources needed for their completion. This activity is essential for ontologies that

131

use ontologies stored in ontology libraries or for ontologies that require a high level
of abstraction and generality. The control activity guarantees that scheduled tasks
are completed in the manner intended to be performed. Finally, the quality manage-
ment activity assures that the quality of each and every product output (ontology,
software and documentation) is satisfactory.

∙ Development-oriented processes. This category includes the processes that are used
in order to produce, install, operate and maintain the software and retire it from use.
They are divided into three groups:

a. Pre-development processes. They are performed prior to the actual software
development. They involve activities related to the study of the software in-
stallation environment, and to feasibility studies. During the ontology pre-
development an environment study identifies the problem to be solved with
the ontology, the applications that will consume the ontology, etc. Also during
the pre-development, the feasibility study answers questions such as: ”what is
the purpose for building such and ontology”; ”is this ontology suitable to solve
the problem for which it is designed?”

b. Development processes. These are the required processes for building the soft-
ware product. They include: requirements, which are comprised of iterative
activities directed towards developing the software requirements specification;
the design process, the goal of which is to develop a coherent and well-organized
representation of the software system that meets the requirements specification;
and the implementation process, which transforms the design representation of
a software product into an implementation language. Obviously, if ontologies
are to be used by computers, they have to be implemented like software prod-
ucts. Thus, firstly in development, the specification activity states why the on-
tology is being built, what are its intended uses and who are the end-users. The
conceptualization activity, like software design process, structures the domain
knowledge as meaningful models at the knowledge level either from scratch
or by reusing existing models. Finally, the implementation activity builds com-
putable models in an ontology language.

c. Post-development processes. They are related to the installation, operation, sup-
port, maintenance and retirement of a software product. They are executed af-
ter the software construction. As in software, these activities are applied to
ontologies in the way we explain in what follows. During post-development
maintenance activities concern updates and corrects the ontology if needed.
Also during post-development, the ontology is (re)used by other ontologies or
applications. Evolution involves managing ontology changes and the impact of
updated versions of the ontology, taking into account the applications and the
environments on which it can be used.

∙ Integral processes. These processes are required for successful completion of soft-
ware project activities. They are executed concurrently to the software development-
oriented processes and include those activities that are necessary for the success-
ful integration of the overall system. With respect to software development and
management they cover the processes of knowledge acquisition, verification and
validation, software configuration management, documentation development and
training. The activities proposed by the standard for these processes can be applied

132

also to ontologies in the following ways. Ontology evaluation involves assessment
of ontologies and associated execution environments from a technical point of view.
Documentation for ontologies is as necessary as in software products. Configura-
tion management can be applied to ontology as a means of assessment to make sure
that the developed ontology adheres to its original requirements.

After we have seen how the IEEE Standard can be applied to ontology development,
in the next Section we describe the complement criteria that we have introduced to
the above processes defined in the IEEE standard in order to establish an ontology
management evaluation framework.

3 Evaluation Criteria

We present here the additional ontology evaluation criteria that we have defined with
respect to the aforementioned IEEE standard in order to make the standard applica-
ble to the ontology development and management processes. For presentation pur-
poses we introduce the new criteria based on practical experience by the application
of the aforementioned process categories that are defined in the IEEE standard on ex-
isting ontology repositories. Such a repository on which we have been experimented
is the ORATE (Ontology Repository of Assistive Technologies), which is located at
http://ontologies.informatik.uni-bremen.de/. ORATE hosts a large
collection of assistive-related ontologies.

3.1 Project Management Processes

Project management includes on-going activities that are executed during the whole
period of the ontology capture and development process. We do not provide new criteria
for this category. However we review the most common methodologies for ontology
management processes in general with respect to their support for project management
activities.

3.2 Pre-Development Processes

During the ontology pre-development phase an environment study identifies the prob-
lem to be solved with the ontology, the applications where the ontology will be inte-
grated, etc. Also the feasibility study provides a mechanism to refine the vision state-
ment and to find out whether an ontology is actually worthwhile in terms of expected
costs and benefits. A feasibility report not only provides recommendations of how to
re-fine the vision statement, but also the material and rationale underpinning it. As pre-
viously, we do not provide new criteria for this category. However we review the most
common methodologies according to their support for these pre-development processes.

133

3.3 Development Processes

The development processes category includes most of the new criteria. Firstly, in this
process category that involves those processes that are executed in order to prepare
the main development process, we introduce two new criteria, namely concept hier-
archy and property structure. Hierarchy renders a key aspect in the ontology develop-
ment process. Since hierarchy of the various concepts is part of the ontology design
process and involves decisions made at the initialization of the ontology development
phase it is related to development processes. More specifically it is related to ontology
conceptualization. Evaluation metrics that are derived from this criterion are the size,
the depth, and the breadth of hierarchy, the density (average branching of concepts),
etc., which define the overall complexity of the ontology. A flat concept hierarchy for
example usually means that there are too many concepts on the same level [4]. This
phenomenon implies the existence of unexploited grouping possibilities for concepts
of similar kinds, e.g. to be grouped together under one more general concept. Another
example is the existence of branches very differently structured than others (e.g. very
big depth), something that results in an unbalanced taxonomy. In general, if the level of
abstraction to which the concepts refer is not taken into careful consideration, the result
will be an inappropriate design of the ontology.

Next criterion is the property structure. This criterion, like the previous one, refers
to development processes, as the definition of an appropriate property structure is real-
ized in the development of an ontology. This criterion is associated with metrics such
as the size, the depth/breadth of hierarchy, density and complexity of the ontology, etc.
It is often observed in ontologies for which data or object properties are not properly
structured or not structured at all. In this case, a restructuring process might be neces-
sary by exploiting grouping possibilities for properties of equal domains/ranges or their
functions.

Two more criteria in the same category are domain/range definition of properties
and disjointness restrictions. The domain/range definition criterion covers the activity
of defining the environment to which the ontology has impact. For this reason and
based on the IEEE standard we classify this as a development process. The existence of
properties which do not define their domain/range can cause significant inconsistencies
when using the ontology. Another common case is the existence of object properties
which do not define their range, but instead they appear in restrictions of concepts, in
which the range is set (as a condition of the concept).

Next criterion, disjointness restrictions [5] is also implemented as a development
process. Its impact is visible when the ontology is used as part of an overall application
(e.g. when instances are added, forms are created, queries have to be managed, etc.).
Although most concepts inside the ontology are usually pairwise disjoint with each
other, this condition is not always there. On the other hand, for some other concepts
disjointness should not hold when there exists an individual that is an instance of two
classes. In this case disjointness restriction should be removed from the two classes.

3.4 Post-Development Processes

Three ontology-specific criteria are introduced in the post-development process cate-
gory, that correspond to activities such as support, maintenance and retirement. These

134

are repetition of similar ontological concepts, subtraction of modules and naming con-
ventions.

The first criterion is presented in the post-development processes category because
it is related to the main ontology post-development activities of maintenance and reuse.
In particular this criterion concerns modularization (e.g. what modules are defined in
the ontology, how they are defined, if they can be imported/exported/reused, etc). If
similar ontological concepts are repeated frequently throughout the ontology structure,
they can possibly be combined to one module and reused whenever necessary. Hence,
repeated concepts can be defined only once and their use be extended within other
definitions.

The second criterion, subtraction of modules, is closely related to the previous one,
since it refers to subtracting modules in general (either functional or logical) from the
whole ontology, which is also the result of applying measures in order to eliminate
repetition of similar concepts. Such an action can reduce the overall complexity and
elucidate dependencies between various ontology parts. From our practical experience
with ORATE ontologies we noticed that, some ontologies have duplicate definitions of
the same concept or concepts which are very similar (or almost identical to each other).
In such a case, it is necessary to eliminate duplicate definitions and remove similar
concepts or merge them to a single one. Moreover, there might be properties initially
created for some purpose, but finally never used at all. These properties should also
be removed. All these steps usually result in an ontology of reduced complexity, more
”clear”, compact and readable.

Moreover, in this category we have included a criterion about naming conventions
[6]. This criterion has to do with the formulation of ”good” terms and definitions, where
essential features should be satisfied by all naming conventions (e.g. nominal, verbal,
etc). Circularity in definitions should be avoided and junk categories should be elimi-
nated.

3.5 Integral Processes

In the group of integral processes we have included a criterion about documentation
and information visualization. The integral processes include the activities of validation
and documentation development. They are related to documentation, syntax (syntactic
correctness, breadth of syntax used), and governance in used terms, etc. The specific
criterion concerns the activity of enriching the ontology with additional information
(e.g. natural language comments/annotations, metadata, implementation code, etc.), as
well as the collection of documents and explanatory comments generated during the
entire ontology building process. In general, this issue has to do with anything that
could be useful to help users, who did not participate in the ontology development, to
understand and learn how the ontology was built.

4 Evaluation of Existing Ontology Development Methodologies

This section presents a survey of ontology development methodologies and the results
obtained after conducting benchmarking of the existing tools with respect to our IEEE

135

1074-1995 standard-based evaluation framework. A short description of the main char-
acteristics of the ontology development and management methodologies that partici-
pated in our benchmarking evaluation is provided in what follows.

4.1 Ontology Development and Management Methodologies

The Cyc methodology which arose from experience of the development of the Cyc
knowledge base contains a huge amount of common sense knowledge [5]. After eval-
uating Cyc we saw that it provides limited description of the criteria and processes
described in Section 3. For example, the criteria for formulating the concept hierarchy
are not mentioned.

The Uschold and King ontology development method [7], also known as the ”skele-
tal method”, is based on the experience of developing the Enterprise Ontology which
is a collection of terms and definitions relevant to business enterprises. This method is
composed of four distinct stages: identification, construction, evaluation and documen-
tation. However, some criteria are missing in the processes it does propose (develop-
ment and integral), particularly: concept hierarchy, property structure, naming conven-
tions and information visualization.

The Toronto Virtual Enterprise Method (TOVE) [8] was derived from the authors’
own experience in developing ontologies for business and corporate processes, using
motivating scenarios to describe problems and examples that were not addressed by ex-
isting ontologies. This methodology is very formal and can be used as a guide to trans-
form informal scenarios in computable models. However, it shows similar omissions as
the previous methodology. In particular, no reference is made to the criteria concerning:
naming conventions and documentation but it provides more details for the criteria in
the processes it does propose, i.e. development and post-development processes. These
include concept hierarchy, disjointness restrictions and subtraction of modules.

The METHONTOLOGY framework [9] is essentially a descriptive method that pro-
vides automated support for ontology development and is based on the IEEE 1074-1995
standard for software development; it suggests which criteria should be accomplished
when building ontologies, but it does not provide guidance as to how they should be
carried out. Thus, some activities and techniques relevant to the post-development pro-
cesses should be specified in more detail.

The method based on SENSUS [10] is completely different from the others. Domain
ontologies built using the SENSUS approach share the same high level concepts (or
skeleton). Thus systems that use such ontologies will share a common structure of the
world, and it would be easier for them to communicate because they share the same
underlying knowledge. However, this methodology does not mention at all any post-
development processes that are required in order to ensure that the resulted ontologies
satisfy a set of usability standards.

On the contrary, CommonKADS methodology [11] does not put emphasis on man-
agement and integral processes but only to pre-development and development pro-
cesses. According to this methodology, the phases to ontology design are: feasibility
study, refinement and evaluation, while the management processes are missing.

The partially well-documented On-To-Knowledge methodology [12] includes the
identification of goals that should be achieved by knowledge management tools and it

136

is based on an analysis of usage scenarios. It is a centralized ontology development
method that risks becoming too much geared towards a single application and not to-
wards satisfying general management and development criteria. This could also be a
potential problem for ROD [13] which is a methodology that is used to build ontologies
for under developed domains without ensuring that the resulted ontologies satisfy a set
of usability standards. It consists of three processes: domain analysis, document and
language processing which correspond to development processes.

Holsapple et al. [14] focus their methodology on the collaborative aspects of on-
tology engineering but still aim at a static ontology. According to their methodology a
knowledge engineer defines an initial ontology which is extended and modified based
on the feedback from a panel from domain experts. This feedback does not include
criteria relevant to the post-development and integral processes.

The DOGMA methodology [15] is quite similar to DILIGENT [16] and HCOME
[17] methodologies. All these efforts move towards the third-generation of ontology
engineering methodologies. Specifically, they focus on management and development
criteria and thus emphasize on issues concerning good representation and architecture
of the ontologies. In addition, these methodologies consider evolving ontologies, point-
ing on the importance of documentation, versions management and merging of ontolo-
gies. All three of them omit the post-development processes criteria.

UPON (Unified Process for ONtology building) [18] is an incremental methodology
for building ontologies. This methodology stems its characteristics from the Software
Development Unified Process and uses the Unified Modeling Language (UML) to sup-
port the preparation of all the blueprints of the ontology project. Because of its nature,
UPON does not deal with management and integral issues. On the other side it describe
in detail the development criteria, which is an advantage over the adoption of other
methodologies, that roughly cover the same criteria as UPON.

Karapiperis and Apostolou [19] proposed a methodology which complies almost
perfectly with our criteria. This approach starts with the deployment of an initial ver-
sion of the ontology, created by the coordinator, based on the participants’ requirements.
The initial version is being iteratively evaluated by the participants and it finally evolves
into the final version. It ensures that all participants agree and accept the resulting ontol-
ogy, being a product of a joint team effort. These phases comply also with Holsapple’s
phases [14]. However, due to the iterative cycles of the consensus building mechanism
the collaborative ontology approach require more time and effort to deployment as op-
posed to other approaches.

In [20] a novel modeling methodology for biomedical ontologies is designed called
GM. This methodology has the similar compliance to our evaluation framework as the
above methodology. A key feature of this methodology is the use of Concept Maps
(graphs consisting of nodes representing concepts, connected by arcs representing the
relationships between those nodes) throughout the knowledge acquisition process. Un-
like GM, iCapturer [21] makes use of all the development criteria except from concept
hierarchy and property structure. This methodology does not include the applicability
of an ontology in a given application domain.

Last but not least NeOn (http://www.neon-project.org) is a framework for devel-
oping networked ontologies. It is one of the most comprehensive works in terms of

137

ontology engineering. The framework incorporates a methodology. The first version
of the NeOn Methodology for collaboratively building networks of ontologies is avail-
able since February 2008. This version of the methodology is focused on the post-
development and integral processes. The second version of the NeOn Methodology
[22] for collaboratively building networks of ontologies launched in February 2009.

4.2 Benchmarking Results

The result of the comparative evaluation of the aforementioned key methodologies is
illustrated in Table 1 where the conformance of each methodology to our evaluation
criteria is shown. Rows in Table 1 represent the various methodologies, while columns
represent the different groups of processes as they are defined in the IEEE 1074-1995
standard. Each cell in the table can be filled in with five types of values. The value
”described” (D) means that the approach establishes for the considered metric: how to
do each task, when to do it, who has to do it, etc. The value ”proposed but not described”
(P-ND) means that the methodology of the corresponding row identifies the process that
is written in the column as a process to be performed during the ontology development
process but there is no description for this process. The value ”not proposed” (NP)
means that public documentation does not mention the non-considered aspect. Finally
”limited” (L) means that limited information is provided for the particular group of
processes.

According to this table, there is no methodology with a full conformance to our cri-
teria except from Consensus-based and GM methodologies. However the Consensus-
based ontology approach to ontology engineering may require more time and effort to
deployment as opposed to other approaches due to the iterative cycles of the consensus
building mechanism but this tradeoff is expected to be improved in the long term. In ad-
dition, the GM methodology emphasizes the notion of collaboration in the development
process, particularly during knowledge acquisition. The GM knowledge acquisition re-
lies heavily on interaction; the higher the level of interaction amongst domain experts,
the more refined the specific models are likely to be.

The purpose of the benchmarking process we conducted was to figure out how suf-
ficiently each methodology conforms to the proposed evaluation criteria. The process
adopted for this purpose was similar to the one adopted in the OntoWeb project. A de-
scription of methodologies for developing, maintaining, evaluating and re-engineering
ontologies is provided in the public deliverable D1.4 of the OntoWeb project [3], while
a thorough survey can be also found in [23]. Our evaluation procedure presented in this
paper extended the one used in OntoWeb by adding nine more methodologies to the
existing ones.

5 Conclusions and Future Work

In this paper we presented a comparative analysis whose goal is to benchmark a set of
different ontology management and development methodologies according to a set of
criteria. For the deployment of our evaluation framework we have used the one adopted
by the Ontoweb project as a basis. Because there are quite a few survey papers on

138

Table 1. Comparison of various ontology development methodologies with respect to the new
criteria based on the IEEE 1074-1995 standard processes. The following abbreviations are used.
NP: not proposed, D: described, L: limited, ND: not described, P: proposed.

Processes distinguished in the IEEE 1074-1995 standard
and corresponding criteria

Methodologies Project Pre- Development Post- Integralmanagement development development
Cyc NP NP NP NP L

Uschold & King’s ND ND L NP L
TOVE ND ND D NP L

METH-ONTOLOGY D D D P-ND D
KACTUS D D D NP L
SENSUS D D D NP D

CommonKADS L D D NP L
OTK L D L NP L
ROD D D D D L

Holsapple D D D NP L
DOGMA D D D NP D

DILIGENT NP D NP L D
HCOME D D D P-ND D

UPON NP D D NP L
Consensus-based D D D D D

GM D D D D D
iCapturer D P-ND D D D

NeOn NP L NP D D

methodology, we provided a brief description of the most well known approaches for
building ontologies both from scratch, or reusing ontologies from existing ontology
repositories. Finally we evaluated them according to the set of criteria proposed based
on the IEEE 1074-1995 standard.

Moreover, our framework extends the Ontoweb framework by also including nine
additional methodologies. The evaluation results reveal conformance of the evaluated
methodologies according to the different criteria proposed in this paper. We have seen
that Consensus-based and GM methodologies comply almost perfectly with our criteria.
However, Consensus-based and GM are difficult to be applied. Consensus-based ontol-
ogy approach requires more time and effort to deployment due to the iterative cycles of
the consensus building mechanism. In addition, the GM methodology emphasizes the
notion of collaboration in the development process, particularly during knowledge ac-
quisition. The fact that GM knowledge acquisition relies heavily on interaction makes
this methodology difficult to use and understand, especially for users who want to ap-
ply/reuse it (for example, for their own application). Therefore, a solution that balances
between performance, usability and conformance to criteria should be mainly sought
among SENSUS, METHONTOLOGY, DILLIGENT and HCOME.

The comparative analysis proposed in this paper extended the Ontoweb framework
that has been used as evaluation framework for ontology development methodologies by

139

adding further criteria that drive the comparison. These criteria support domain experts,
users, knowledge engineers and ontology engineers in collaboratively restructuring a
shared ontology. Moreover, the presented evaluation framework guides the participants
in a perfect way through the ontology development lifecycle, allowing for personal-
ization and taking into account specific criteria as the proposed ones. Our future plans
include the establishment of quantitative metrics to measure the conformance of the
benchmarked methodologies with respect to the different evaluation criteria.

A real case of how the aforementioned criteria can be applied on a real ontology
is going to be presented. The described process will be applied to a set of existing
ontologies. The expected outcome of the presented case study and evaluation will form
the basis for the development of a concrete methodological approach and a set of criteria
for ontology evaluation.

References

1. IEEE Standard for Developing Software Life Cycle Processes. IEEE Computer Society, New
York (USA). April 26, 1996.

2. K.K. Breitman, M.A. Casanova and W. Truszkowski, ”Methods for Ontology Development”.
Semantic Web: Concepts, Technologies and Applications, Part III, Chapter 8, pp. 155-173,
Springer, 2007.

3. OntoWeb Project IST-2000-29243, Deliverable 1.4: ”A Survey on Methodologies for
Developing, Maintain-ing, Evaluating and Reengineering Ontologies”, Available online:
http://www.ontoweb.org/About/Deliverables/OverviewProjectPhase3/D1.4-v1.0.pdf

4. M. Delanda, Intensive science and virtual philosophy, Continuum, New York, 2002.
5. D.B. Lenat and R.V. Guha, ”Building large knowledge-based systems”. Addison-Wesley

Publising Com-pany, Inc. 1990.
6. A.L. Rector, ”Modularisation of domain ontologies implemented in description logics and

related formal-isms including OWL”. In Proceedings of the 2nd international Conference on
Knowledge Capture (Sanibel Island, FL, USA, October 23 - 25, 2003).

7. M. Uschold and M. King, ”Towards a Methodology for Building Ontologies”. In Proc. of
Workshop on Basic Ontological Issues in Knowledge Sharing (held in conjunction with IJ-
CAI’95), 1995, Montreal, Can-ada.

8. M. Gruninger and M. Fox, ”Methodology for the Design and Evaluation of Ontologies”. In
Proc. of Work-shop on Basic Ontological Issues in Knowledge Sharing (held in conjunction
with IJCAI’95), 1995, Mont-real, Canada.

9. M. Fernández-López, A. Gómez-Pérez and N. Juristo, ”METHONTOLOGY: From Ontolog-
ical Art Towards Ontological Engineering”. In Proc. of Spring Symposium on Ontological
Engineering (AAAI’97), pp. 33-40, 1997, Stanford, CA, USA.

10. B. Swartout P. Ramesh, K. Knight and T. Russ, ”Toward Distributed Use of Large-Scale
Ontologies”. In Proc. of Spring Symposium on Ontological Engineering of AAAI, pp. 138-
148, March 24-26, 1997, Stan-ford, CA, USA.

11. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de Velde and
B. Wielinga, ”Knowledge Engineering and Management - The CommonKADS Methodol-
ogy”. MIT Press. (1999)

12. S. Staab, H.P. Schnurr, R. Studer and Y. Sure, ”Knowledge processes and ontologies”. IEEE
Intelligent Systems 16 (1) (2001) 26-34.

13. L. Zhou, Q. E. Booker and D. Zhang, ”Toward Rapid Ontology Development for Underde-
veloped Domains”. HICSS 2002: 106

140

14. C.W. Holsapple and K.D. Joshi, ”A collaborative approach to ontology design”. Commun.
ACM 45 (2002) 42-47

15. P. Spyns, R. Meersman and M. Jarrar, ”Data modelling versus ontology engineering”. SIG-
MOD Record Special Issue 31(4), 12-17. (2002)

16. H. S. Pinto, S. Staab and C. Tempich, ”DILIGENT: Towards a fine-grained methodology
for Distributed, Loosely-controlled and evolving Engineering of oNTologies”. ECAI 2004:
393-397.

17. K. Kotis and G. Vouros, ”Human-Centered Ontology Engineering: the HCOME Methodol-
ogy”. International Journal of Knowledge and Information Systems (KAIS), 10(1): 109-131
(Published Online First: 9 Sept. 2005)

18. M. Missikoff and R. Navigli, ”Applying the unified process to large-scale ontology building”.
In Proceed-ings of 16th IFAC World Congress (IFAC) (pp. 61-96). Amsterdam: Elsevier.
(2005)

19. S. Karapiperis and D. Apostolou, ”Consensus building in collaborative ontology engineering
processes”. Journal of Universal Knowledge Management, 1(3), 199-216 (2006).

20. A. Garcia Castro, P. Rocca-Serra, R. Stevens, C. Taylor, K. Nashar, M. Ragan and S. Sansone,
”The use of concept maps during knowledge elicitation in ontology development processes
- the nutrigenomics use case”. BMC Bioinformatics, 7, 267-281. (2006)

21. Good, B., Tranfield, E.M., Tan, P.C., Shehata, M., Singhera, G., Gosselink, J., Okon, E.B.,
Wilkinson, M., ”Fast, cheap, and out of control: A zero curation model for ontology devel-
opment”. In: Pacific Symposium on Biocomputing. (2006)

22. M. C. Su?rez-Figueroa, K. Dellschaft, E. Montiel-Ponsoda, B. Villaz?n-Terrazas, Z. Yufei,
G. Aguado de Cea, A. Garc?a, M. Fern?ndez-L?pez, A. G?mez-P?rez, M. Espinoza, M.
Sabou. NeOn Deliverable D5.4.1: ”NeOn Methodology for Building Contextualized On-
tology Networks”. NeOn Project. Available online: http://www.neon-project.org. February
2008.

23. C. Tempich, H. S. Pinto and S. Staab, ”Ontology Engineering Revisited: An Iterative Case
Study”. ESWC 2006: 110-124.

141

A pan-European repository:

SEMIC.EU as the point of reference for eGovernment

ontologies

Klaus Reichling, Martin Luts, Renke Fahl-Spiewack

Semantic Interoperability Centre Europe,

]init[AG für digitale Kommunikation, Berlin, Germany

ELIKO Competence Centre in Electronics-, Info- and Communication Technologies, Tallinn,

Estonia; Department of Informatics, Tallinn University of Technology, Estonia

Abstract. The Semantic Interoperability Centre Europe (SEMIC.EU) is a

Service of the European Commission to foster seamless data exchange. One of

the principal objectives of the initial project setup was the creation of a

repository of semantic interoperability assets for pan-European eGovernment

projects. eGovernment arrived at the opportunities of semantic technologies. A

recent poll by SEMIC.EU showed: Over 80 per cent of respondents indicated

they have used or are going to use ontologies in the next 12 months. European

public administration has realized the potential of ontological solutions for its

purposes.

Keywords: semantic interoperability, European Commission, eGovernment,

repository, ontologies, ISA, IDABC

1 Introduction

The Semantic Interoperability Centre Europe, SEMIC.EU, is a service offered by

the European Commission: It facilitates the reuse of syntactic and semantic assets

needed for semantic interoperability. It was initiated in the framework of the

programme „Interoperable Delivery of European eGovernment Services to public

Administrations, Businesses and Citizens‟ (IDABC) and is carried on under the

successor programme “Interoperability Solutions for European Public

Administrations”, ISA1.

A standardised clearing process, supported by platform functionalities, governs the

evolution of the data models, XML schemas, code lists, taxonomies and ontologies

which are shared through the open repository.

1 http://ec.europa.eu/isa

142

2 Klaus Reichling, Martin Luts, Renke Fahl-Spiewack

The service addresses seamless data exchange in Europe, particularly in public

administration. It is understood that countries have different administrative, technical

and linguistic backgrounds. Solutions for the technical, semantic, and organisational

dimensions of interoperability are needed. SEMIC.EU's focus is on the vital semantic

dimension of interoperability.

As a collaborative service and with a repository of assets for semantic

interoperability, SEMIC.EU is a catalyst for the preservation of meaning in the data

exchanged at all levels of administration.

2 The asset principle

The SEMIC.EU web portal comprises an open repository of "interoperability

assets". The term "interoperability asset" describes a resource that supports the

exchange of data in distributed information systems, roughly to be understood as data

models that help overcome differences in the systems involved in the exchange of

certain data.

SEMIC.EU‟s most common semantic specifications used in interoperability assets

are code lists, taxonomies and also ontologies including their respective mappings.

They are collected, quality checked and made available for download and reuse in

the web repository. The assets are taken through an open clearing process [SEM01].

The common features of all these interoperability assets are their design and

suitability for concrete data exchange and data modeling purposes in a wider

eGovernment context.

Fig. 1 Multilateral assets and mappings

143

A pan-European repository:

SEMIC.EU as the point of reference for eGovernment ontologies 3

2.1 Life cycle of an interoperability asset

SEMIC.EU has defined a collaborative process of incremental quality

enhancement and adaptation to a comprehensive set of criteria. Any asset submitted to

the repository enters this clearing process.

An asset is a package of related documents that form a specification. The contained

code list, taxonomy, XML schema or ontology is just a component of the asset as a

package.

From a rough draft to a certified recommended means of facilitating data

interchange, the process requires actions from the owner of the asset, SEMIC.EU as

the broker and quality assurer, the general public for consultation and enhancement

and expert communities for validation and approval. Technical, semantic and

pragmatic aspects are assessed during all steps. Assets of interoperability and their

respective releases are scrutinised by a staff member - the clearing process manager,

as well as through public consultation and by experts in the domain of the asset.

During the process, assets are labelled with their current state of quality assurance.

The successive stages of the process depend on actions by the asset agent (the person

in charge of the asset) and the clearing process manager, supported by the platfrom

(see chapter 3).

Although every asset has its own, individual life cycle, the paths and development

stages are defined by the clearing process of the SEMIC.EU platform [SEM02].

Assets pass a number of successive stages consisting of quality assessment and

feedback. A certain label indicates the maturity level of an asset (or one of its

releases) – known as the "asset/release state":

Unpublished

For an unpublished asset to be submitted to SEMIC.EU, there are no technical or

formal requirements other than the registration of the asset agent.

The asset agent must submit a set of metadata and select a topical category

(domain) for an asset, but has not requested its publication yet.

Fig. 2. Screenshot: Asset Repository

144

4 Klaus Reichling, Martin Luts, Renke Fahl-Spiewack

The asset is not displayed in any search results or lists outside the asset agent's

personal area on the website. It can only be viewed by the agent and the Clearing

Process Manager.

Fig. 3. Basic three-step scheme of the clearing process

Development

There are still no technical requirements, but the asset is now published and visible

to all users.

To put an asset "under development", the asset agent needs to request its

publication which will then be approved or rejected by the clearing process manager.

This is done via repository functionalities.

This state is chosen by the agent if he or she wants to get feedback and support by

other users. With an asset "under development", asset agents can make use of

community features and seek advice from others in the development of their data

model. For each published asset, a dedicated forum thread is created at

www.semic.eu.

Registered

This is the first state of the actual clearing process since for this state to be reached,

an asset needs substance (i.e. a first release):

The asset agent must upload the actual artefacts (data model files, a licence

specification and other documentation) or provide a link where this information can

be obtained.

If the clearing process manager approves the publication of the release, both the

release and the asset are marked as "registered".

Mature

The requirements of negotiation and collaboration take centre stage here: An asset

marked as "mature" has taken the important first step of the quality assurance and

enhancement process.

145

A pan-European repository:

SEMIC.EU as the point of reference for eGovernment ontologies 5

At least one release of an asset has been approved as mature by the clearing

process manager and after a community review. The artefacts it consists of meet

quality criteria concerning their completeness, syntactic requirements and usability

for practical applications.

The focus in granting "mature" state to an asset is on its potential for reuse.

This is a cyclic process in which the asset enhances its quality incrementally (in its

respective releases).

Conform

An asset accepted as conform by the clearing process manager and the

conformance committee – a group of domain experts - has reached the highest

possible quality state, i.e. one of its releases was accepted as conform.

From a clearing process perspective, the development of an asset ends here. It is

considered conform to all the criteria defined in the Clearing Process Framework.

Modifications (especially for reuse in other contexts) will make it a new release or,

in most cases, a new asset which will undergo a separate clearing process.

These stages, the community review and the role of the conformance committee

reflect the interactive nature of the entire process as well as the room for negotiation

about appropriate semantic properties, granularity, usability and other quality criteria

foreseen in the process. The basic process is illustrated in Fig. 3.

The controlled vocabularies [SEM03] and data models provided enter the clearing

process, i.e. they are subject to a quality assurance procedure and actual peer review,

possibly resulting in the publication of revised and enhanced versions. Through this

instrument, SEMIC.EU introduces a new layer of negotiation in the creation of

semantic interoperability.

3 Roles and platform features in the clearing process

The clearing process involves people in various roles that are given to registered

users. They are supported by the SEMIC.EU platform in executing their tasks. With

respect to their duties and rights in the context of an interoperability asset, roles are

assigned to these users. The roles are attached to permissions which enable the users

to execute tasks on the SEMIC.EU platform. Slightly simplified, the roles are divided

into: audience, asset provider (agent) and SEMIC.EU as an organisation (including

the clearing process manager). These groups carry out the clearing process in its

successive stages.

Assistance is provided by SEMIC.EU in questions of documentation, licensing and

publication of assets. After the publication of an asset, the owner can request

additional quality assessment.

146

6 Klaus Reichling, Martin Luts, Renke Fahl-Spiewack

Asset assessment

Asset agents receive feedback on their assets from the SEMIC.EU clearing service,

practical advice on development and avoidance of potential semantic conflicts

compiled in the form of a comprehensive SEMIC.EU asset assessment report.

Asset management / Repository

The platform manages the versioning and assists in the collaborative development of

the asset. When the asset agent uploads an asset to the repository, the asset receives

an initial version number, incremented each time a new version of the asset is

uploaded or the asset progresses to another state in the maturity process. Using the

forum, interested users can discuss the design and development decisions.

Asset refinement

During the asset refinement the clearing manager gives feedback on the asset

concerning its design, documentation, modularisation and semantic accuracy. A focus

in the refinement of assets is their respective potential for reuse.

Asset harmonisation

During the asset harmonisation assets with similar focus are studied and if possible

consolidated. The SEMIC.EU clearing manager works together with the asset-agents

and requests feedback from partners, experts and interested stakeholders.

Asset development assistant

Additional support in the development process can be requested via the asset

development assistant, an interactive feature linked to the registration and

development processes. The assistant suggests issues to consider, gives examples and

guides the user through all relevant phases of asset development, asset clearing,

licensing and quality improvement. Common user requests and issues of general

interest are successively included in the assistant functionality.

Contents on the platform are interlinked and related (e.g. actors and assets), so that

users can recognise the relationships of artefacts (derivates, similar content or use

case). One of the most important cases is the reference from a mapping asset to its

respective source and target artefacts (taxonomy or ontology).

4 Exploiting the potential of ontologies

The potential of ontologies to generate semantic interoperability in eGovernment

services and general data exchange is commonplace. However, empirical data on the

actual use of ontologies and their acceptance by practitioners has yet to be gathered.

The activities coordinated by SEMIC.EU show a more widespread use of single

data models, code lists and taxonomies in every-day eGovernment contexts. They are

shared through the open repository of SEMIC.EU, undergo an open, peer-review

147

A pan-European repository:

SEMIC.EU as the point of reference for eGovernment ontologies 7

based quality assurance process and are the object of community work and

coordination.

However, a recent poll by SEMIC.EU among its user base has shown that well

over 80 per cent of the respondents claimed to have used or are planning to use

ontologies for data exchange within the next 12 months2.

Based on this we expect that more than 30 eGovernment projects will request for

SEMIC.EU coaching services to develop, implement and reuse of ontologies in

practical eGovernment projects within the next year.

In a Union of 27 Member states with a number of other associations, candidate

countries, the European Economic Area, etc., federating existing sources and making

them accessible through a central resource, is a pivotal task.

As a European centre for eGovernment services, it is SEMIC.EU‟s duty and aim to

establish the link between ontologies and eGovernment practice.

From the point of view of government users the benefit is often not apprehensible,

in contrast to other semantic specifications with simpler structures like code lists and

glossaries.

Public administration bodies themselves have not shown readiness for

implementation or usage of ontologies (or related methods).

5 eGovernment requires reliability, soundness, usability

All SEMIC.EU‟s activities and initiatives are performed in the public interest.

Therefore they are always driven by the demand for practical implementation. This

has a number of consequences also for strategic and organizational considerations:

SEMIC.EU‟s mission is not to be fast or avant-garde but rather solid, stable and

reliable.

The demands of public services require that solutions are concrete, reliable, in line

with common standards and legislation, and – to a certain degree – transferable. The

latter is a specific European requirement due to the heterogeneous linguistic and

legislative landscape in the European Union despite the existence of European

directives and regulations3.

What about SEMIC.EU‟s relationship to the semantic web community and existing

semantic technologies? Knowledge is indeed extracted from silos, made available and

accessible but only as a function of its usability and purposefulness in matters of

public administration and data exchange for eGovernment services. Peer-reviews and

community work warrant accuracy and practicability of the proposed solutions.

2 The survey was conducted via e-mail among 900 users (experts in eGovernment, IT) of

SEMIC.EU representing predominantly EU Member States. The response rate was 20

percent. Respondents were asked to choose one out of three statements (“Yes, we have

already used ontologies”, “Yes, we plan to implement ontology based applications within the

next 12 months”, “No, ontologies have never been relevant in the context of our work”).
3 Ferrario and Guarino givan an assessment of the potential of ontologies in services contexts

[6]

148

8 Klaus Reichling, Martin Luts, Renke Fahl-Spiewack

5.1 Is government ready to work with ontologies?

Against this background, we can state that eGovernment has caught up – it has, in

many cases and ways, embraced the opportunities of semantic technologies. The poll

mentioned above illustrates the demand and willingness of an eGovernment audience

to follow suit, or, respectively, lead the way.

European public administration has realised the potential of ontological solutions

for its purposes and for the extension of its services and efficiency measures.

Austria has once more proven to be a frontrunner in the adoption of technologies

for government services. The Austrian chancellery and municipalities already offer

ontology-based citizen services [7].

The European Commission‟s DG Environment is developing a novel information

platform and service, making use of dispersed information from various domains and

resources in order to generate added value and integrated information in climate

change matters.

5.2 Are ontologies ready to deliver to government?

Researchers and developers are now called on, it is their task to produce usable

ontologies that meet the needs and requirements of practitioners, i.e. secure, reliable,

proven ontologies and methodologies that have the power to be used in real-life

scenarios. Theory is a precondition, practicability is what counts at the end of the day.

Moreover, it will be advantageous to create and find links between ontologies and

other types of semantic interoperability assets already available on SEMIC.EU.

For an ontology to be of use to administrative services, quality requirements must

be clear, precise and comprehensive.

6 Making implementation possible: Federation and Reuse

The aspects of reuse and exchange are imperative for SEMIC.EU‟s approach. The

Semantic Interoperability Centre Europe is therefore not only organized around the

online platform, but also with its communities and as a coaching and clearing service.

How can eGovernment projects and ontology developers benefit from each other?

SEMIC.EU provides the organizational structures for coordination and federation of

existing resources [SEM04] & [EPR01]. The approach of collaborative issue solving

and network building creates an environment that can work as an interface between

theory and practical requirements.

At the same time it is an information space where latest developments, unresolved

issues and new ideas can be shared.

Much as it is SEMIC.EU‟s task to coordinate cross-country and pan-European

cooperation, it is also vital to monitor and display trends and developments. This is,

however, always with a view to quality and practicability criteria.

149

A pan-European repository:

SEMIC.EU as the point of reference for eGovernment ontologies 9

What does SEMIC.EU have to offer to the scientific community and to

practitioners at the same time? It is the European source for cooperation partners,

experiences, real life application of technologies (proof of concept), bringing together

dispersed initiatives and knowledge. Making solutions accessible as a clearinghouse is

one part of this function.

In order to turn this general mission into actual benefit, ontologies (including their

drafts and beta versions) must be documented and available at SEMIC.EU in order to

become ready for use (see Fig. 4 for the total number of assets available through

SEMIC.EU).

Only if this is accepted and put into practice, can the SEMIC.EU community yield

results from its opportunities for joint and coordinated development of ontologies, to

double-check against practice requirements and feasibility.

6.1 What does SEMIC.EU not do?

SEMIC.EU does not develop ontologies itself. Coordination, coaching,

investigation, demand and applicability are the main driving forces for ontology

coordination through SEMIC.EU. Therefore, it offers academics, government

officials, IT professionals and project managers assistance in

 using an existing and established infrastructure with access to decision-makers,

practitioners, voices in both technical and administrative/political issues.

Fig. 4 Total assets registered at SEMIC.EU

150

10 Klaus Reichling, Martin Luts, Renke Fahl-Spiewack

 Building on a network and getting the backup of the central European

administrative body, the European Commission.

7 SEMIC.EU – The role as a point of collaboration for pan-

European eGovernment initiatives

SEMIC.EU aims to facilitate seamless data exchange in Europe, particularly in

public administration. Therefore questions of semantic interoperability have to be

solved. Ontologies are one of the most relevant concepts to enable semantic

interoperability.

Currently SEMIC.EU initiates collaboration with other Member States initiatives

and domain specific repositories to facilitate the integration and federation of different

repositories. Cooperations have been established with ontology repositories such as

the United Nation‟s Food and Agricultural Organization‟s AIMS (Agricultural

Information Management Standards) and the United States National Center for

Biomedical Ontology (NCBO).

Looking from the practical point there are quite a lot of open questions to be

solved.

 What is the most promising and useful strategy to link them?

 Which metadata are relevant and need to be shared?

 How can we establish interoperability between ontology repositories?

Our next step is to create a common metadata schema that allows for data

exchange between different repositories. Furthermore it will be necessary to develop

different scenarios for repository integration, and define use-cases and collect

requirements for these scenarios. In the context of ontology development and

mapping, this will also mean that visualisation, relationship definition and navigation

support can be realised.

SEMIC.EU invites all other initiatives of open repository development to

collaborate.

151

A pan-European repository:

SEMIC.EU as the point of reference for eGovernment ontologies 11

References

1. [SEM01] Fraunhofer ISST and]init[.Quality Framework for Interoperability

Assets. European Commission – IDABC. 2008.

2. [SEM02] Fraunhofer ISST and]init[. Vision of the Clearing Process.

European Commission – IDABC. 2008.

3. [SEM03] Fraunhofer ISST and]init[. Study on Methodology. European

Commission – IDABC. 2009.

4. [SEM04] Community on SEMIC.EU Technology Reuse

http://www.semic.eu/semic/view/snav/network/Communities/Technology-

reuse.xhtml?cid=378223

5. [EPR01] SEMIC.EU Technology re-use Community

http://www.epractice.eu/community/semictechreuse

6. Ferrario, R.; Guarino, N.: Towards an Ontological Foundation for Services

Science. In: J. Domingue, D. Fensel & P. Traverso (eds.) Future Internet -

FIS 2008, First Future Internet Symposium, Vienna, Austria, September 29-

30, 2008, Revised Selected Papers (Lecture Notes in Computer Science

5468), pp. 152-169 (2008)

7. Salhofer, P., Stadlhofer, B.; Tretter, G.: Ontology Driven e-Government. In:

P. Hahamis (ed.), Proceedings of the 9th European Conference on e-

Government, London, United Kingdom, June 29-30, 2009, Reading: API,

pp. 540-549 (2009)

152

	Preface
	Programme
	SOBOLEO – A Repository for Living Ontologies Simone Braun and Valentin Zacharias
	Collaborative Metadata Editor Integrated with Ontology Services and Faceted Portals Jussi Kurki and Eero Hyvönen
	Linked Open Ontology Services Kim Viljanen, Jouni Tuominen, Mikko Salonoja and Eero Hyvönen
	A User Interface for Ontology Repositories Jouni Tuominen, Mikko Salonoja, Kim Viljanen and Eero Hyvönen
	OWLGrEd: a UML Style Graphical Editor for OWL Janis Barzdinš, Guntis Barzdinš, Karlis Cerans, Renars Liepinš and Arturs Sprogis
	ORE-MP: Ontology Reasoning Engine for Molecular Pathways Renato Umeton, Beracah Yankama, Giuseppe Nicosia and C. Forbes, Jr. Dewey
	CONSISTOLOGY: A SEMANTIC TOOL TO SUPPORT ONTOLOGY EVOLUTION AND CONSISTENCY Najla Sassi, Wassim Jaziri and Faiez Gargouri
	Previewing OWL Changes and Refactorings Using a Flexible XML Database Christoph Lange and Vyacheslav Zholudev
	On the Use of Transformation and Linked Data Principles in a Generic Repository for Semantic Web Services Barry Norton and Mick Kerrigan
	iServe: a Linked Services Publishing Platform Carlos Pedrinaci, Dong Liu, Maria Maleshkova, David Lambert, Jacek Kopecky and John Domingue
	Context-aware access to ontologies on the Web Patrick Maué, Alejandro Llaves and Thore Fechner
	Ontology Recommendation for the Data Publishers Antoine Zimmermann
	Semantic Interoperability Framework for Estonian Public Sector's E-Services Integration Kalle Tomingas and Martin Luts
	Ontology Repositories with Only One Large Shared Cooperatively-built and Evaluated Ontology Philippe Martin
	Using extended metadata model OMV and metrics in OntoLP Portal Anderson Bestteti, Larissa Freitas and Renata Vieira
	Ontology Repository for User Interaction Martins Zviedris
	Evaluation Framework for Ontology Development and Management Methodologies Dionisis Kehagias, Dionysia Kontotasiou and Dimitrios Tzovaras
	A pan-European repository: SEMIC.EU as the point of reference for eGovernment ontologies Klaus Reichling, Martin Luts and Renke Fahl-Spiewack

