
Softw Syst Model (2004) / Digital Object Identifier (DOI) 10.1007/s10270-004-0066-x

PSL:A semantic domain for flowmodels

Conrad Bock1, Michael Gruninger2

1U.S. National Institute of Standards and Technology, 100 Bureau Drive, Stop 8263, Gaithersburg, MD 20899-8263, USA
e-mail: conrad.bock@nist.gov
2 Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
e-mail: michael.gruninger@nist.gov

Received: 25 June 2003/Accepted: 22 November 2003

Published online: 10 November 2004 –  Springer-Verlag 2004

Abstract. Flow models underlie popular programming
languages and many graphical behavior specification
tools. However, their semantics is typically ambiguous,
causing miscommunication between modelers and unex-
pected implementation results. This article introduces
a way to disambiguate common flowmodeling constructs,
by expressing their semantics as constraints on runtime
sequences of behavior execution. It also shows that re-
duced ambiguity enables more powerful modeling ab-
stractions, such as partial behavior specifications. The
runtime representation considered in this paper uses the
Process Specification Language (PSL), which is defined
in first-order logic, making it amenable to automated rea-
soning. The activity diagrams of the Unified Modeling
Language are used for example flow models.

Keywords: Flow model – Flow semantics – PSL – Pro-
cess specification – Control flow – Data flow – Concur-
rency – UML – Activity model

Communicated by Steve Cook

Abbreviations:

CL = Common Logic
KIF = Knowledge Interchange Format
OCL = Object Constraint Language
PSL = Process Specification Language
UML = Unified Modeling Language

Flow models are the most common form of behavior
specification. They underlie popular programming lan-
guages and many graphical behavior specification tools.
However, their semantics is typically given in natural lan-
guage or in varied implementations, leading to unexpected
effects in the final system. This article gives a way to dis-
ambiguate common flow modeling constructs in terms of
constraints on runtime sequences of behavior execution.

Runtime effects are represented in the most concrete way,
to cover all possible execution traces. Desired behavior is
specified by constraining which of the possible executions
are allowed. Reducing ambiguity enables more powerful
abstractions, such as partial specifications that incremen-
tally add constraints in behavior taxonomies.The runtime
representation considered in this paper is the Process Spe-
cificationLanguage (PSL) [12,23],which is defined infirst-
order logic. Constraints on runtime effects are also stated
this way, making behavior specifications in PSL amenable
to automated reasoning with widely available inference
engines.
The article begins with a short discussion relating am-

biguity, abstraction, and expressiveness in languages. It
identifies several unclear aspects of a typical flow model
that will be addressed in the paper. Section 2 gives some
background on PSL, the approach it takes to semantics,
and how it is presented in this article. Section 3 intro-
duces the basic PSL concepts for representing runtime
execution, how these are composed, and how constraints
are written on them. Section 4 covers the ordering of steps
in an execution. Section 5 covers specifications where the
steps are unordered. Section 6 applies the techniques of
Sect. 4 to create behavior taxonomies using partial flow
specifications. Section 7 addresses the issue of control-
ling what an inference engine can add to a specification
(closure). Section 8 briefly examines other approaches to
process semantics.
Examples are given in activity diagrams of the Uni-

fied Modeling Language, version 2 (UML 2) [2, 27], but
could be other flow diagrams, or even programming lan-
guages, most of which are textual forms of flow models.
Some of the examples happen to require hardware or hu-
mans, but implementations would often include software
to coordinate the other two, and in any case no restric-
tion is implied by UML. For lack of more general terms,
we use “execution” and “runtime” from software to mean
the actual playing out of a specified activity, whether it is
in a computer, robot, or human organization.

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

1 Ambiguity, abstraction, and expressiveness

Ambiguity and abstraction have the common character-
istic of omitting information. However, in abstraction the
omission is intentional, clearly identified, and only con-
tains information that users do not need. In ambiguity the
omission is inadvertent, unidentified, and contains use-
ful information. For example, readers of in Fig. 1 often
take the arrow to mean message passing, so the diagram
would be incorrectly interpreted as saying that the behav-
ior Paint sends a message to the behavior Dry. Or those
familiar with rule-based techniques might take it to mean
that drying must always happen after painting whenever
the behavior Paint is performed. It is actually intended to
say the runtime effect of an execution of the ChangeColor
behavior is that an execution of the behavior Paint will
occur, and after that is completed, an execution of the be-
havior Dry will occur. However, the specification does not
say that it means this and only this.
Figure 1 is ambiguous not because it is graphical, tex-

tual languages have the same problem, but because it is
specifying execution with constructs that only implicitly
refer to runtime, rather than explicitly. For example, the
nodes labeled ChangeColor, Paint, and Dry will be exe-
cuted many times in many situations, and the diagram
does not clarify which executions are referred to, or how
the graphical nesting and arcs constrain them. The exact
runtime effect is only given in documentation, examples,
or other human communication, and in implementations,
which may or may not conform to the original specifica-
tion. The one-to-many mapping between language elem-
ents and runtime effects makes the specification more
concise, but also more imprecise.
Other open questions about Fig. 1 include:

1. Are other behaviors allowed to be introduced in
ChangeColor? For example, can an inspection of the
paint occur after painting and before drying?

2. Is there any constraint on how long after painting that
drying must occur?

3. Is it possible under exceptional conditions to not do
any drying at all, for example, if the paint job is acci-
dentally ruined for some reason?

4. Is there any constraint on what behaviors may happen
concurrently with painting, for example operating leaf
blowers nearby?

Resolving ambiguities results in abstractions that add
expressiveness. For example, ambiguity 1 above is ad-

Fig. 1. Example UML 2 flow model

dressed by a construct that clarifies whether additional
behavior occurrences can be introduced between Paint
and Dry. The new construct increases expressiveness by
supporting partial specification of processes, which in
turn enables behavior classification (see Sect. 6). In gen-
eral, abstraction not only reduces ambiguity, but also in-
creases the power of languages.

2 PSL and semantics

The approach taken in this paper is to use language elem-
ents referring directly to runtime execution, for example
the executions of Paint and Dry, sometimes called a se-
mantic domain. In particular, the idea is to define a simple
set of concepts that cover all possible runtime execution
traces, then use these concepts to specify which execution
traces are allowed.For example, if the arrowbetweenPaint
andDry under ChangeColor rules out any other behaviors
occurring in between, then a statement can be written to
only accept execution traceswhere that is the case.At run-
time, exactly one of the allowed traceswill actually happen
for each execution of ChangeColor, and it will conform to
the ChangeColor specified in this way.
The runtime representation in this paper is PSL,which

is designed to facilitate correct and complete exchange of
process information. It is based ona long period of research
stemming from the situation calculus [21, 28] and enter-
prise modeling [5, 6]. It has been applied in scheduling,
process modeling, process planning, production planning,
simulation, project management, workflow, and business
process reengineering. PSL is project 18629 at the Inter-
national Organisation of Standardization, and part of the
work is a Draft International Standard.
PSL has a rigorously-developed semantics using first-

order logic, and is based on a three-step methodology:
identifying intuitions, refining them in mathematical
structures, and then defining a logical language for the in-
tuitions [9, 12]. Specifically, we first chose intuitions about
executing processes arising from applications and exist-
ing languages [29]. These restricted the scope of the effort,
and served as informal requirements. Next, we mapped
each intuition to an element of some mathematical struc-
ture. These are defined either by specifying some class
of algebraic or combinatorial structures, or by extending
classes of structures defined for other parts of PSL. Ex-
amples include graphs, linear orderings, partial orderings,
groups, and vector spaces [9, 11]. Once we were satisfied
that the class of structures reflected our intuitions, we
wrote axioms and definitions in first order logic to formal-
ize the original intuitions, guided by the mathematical
representation [10]. Finally, we proved that the struc-
tures were isomorphic to the extensions of the predicates
in the logical language [11]. This process of using well-
understood mathematical structures in the translation of
intuitions to logic validates that the language does what
we expect.

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

For the purposes of exposition, this article expresses
PSL concepts in UML class diagrams. These are intended
as a guide to the logical definition and mathematical
structures, rather than a replacement. They sometimes
introduce classes that are implied by PSL, but not ex-
plicitly represented in the logic. These could be added
to PSL if needed. The diagrams always use binary as-
sociations, even when the corresponding PSL concept
is ternary, to simplify presentation. For those wishing
to read the logical definition, it should be noted that
it happens to be in the Knowledge Interchange Format
(KIF) [8, 13], but it could be any first-order logic nota-
tion, for example as used traditionally in mathematics,
or UML’s Object Constraint Language (OCL) [26]. It
could also be expressed in a notation-independent model
as in the second version of OCL [25], or Common Logic
(CL) [4].
When PSL concepts are used to specify particular

behaviors, such as ChangeColor in Fig. 1, the format is
also KIF, since these specifications are first-order con-
straints on runtime execution using the predicates defined
by PSL. However, they could also be expressed in OCL or
other first-order logic language. This article uses KIF for
behavior specification, to give process modelers a sense
of how their intentions are rigorously specified using the
format in which PSL is currently defined.

3 Basic PSL concepts

This section introduces the most basic PSL concepts.
They are simple and general so they can be used repeat-
edly as the basis for disambiguation of many kinds of
behavior model. In fact, most of PSL consists of patterns
expressed in terms of the core concepts. Section 3.1 covers
activities and their execution. Section 3.2 shows how they
are composed.

3.1 Occurrences and activities

Since the primary purpose of behavior specification is to
constrain runtime execution, we begin with these two as
the most basic concepts: Activity (a behavior specifi-
cation) and Occurrence (a runtime execution of a be-
havior specification). They are shown as a UML model in
Fig. 2.

Fig. 2. Basic PSL concepts

Fig. 3. PSL occurrence tree

A PSL activity is a reusable behavior, for example,
ChangeColor or Paint, and is equivalent to the UML 2
concept called Behavior. A PSL occurrence is a runtime
execution of an activity. It has no analog in UML, because
UML does not have a direct model of runtime execution
yet. The PSL successor relation associates occurrences
with each other to represent all temporal orderings of
runtime execution of activities whether they conform to
a behavior specification or not, and even including order-
ings that are physically impossible. The relation forms
a tree where every occurrence has exactly one successor
for each activity, indicating the possibility of that activ-
ity happening next, so the branches represent possible
execution traces. Figure 3 shows a partial tree with oc-
currences as small circles, and executions of Paint and
Dry at various points. The occurrence tree contains all
possible executions of Paint and Dry at any time. This in-
cludes branches where they are not executed in the order
specified in ChangeColor, do not execute at all, execute
multiple times, and where other activities are interposed
between them.
A behavior specification in PSL identifies those parts

of the occurrence tree that conform to the behavior. For
example, one of the aforementioned interpretations of the
ChangeColor specification in Fig. 1 is that all executions
of Paint must be followed by an execution of Dry, even if
they are not due to ChangeColor. The occurrences con-
forming to this semantics need to satisfy the constraint
in Expression 1, expressed in KIF. The PSL function
successor is defined to return the successor that is an

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

occurrence of a given activity, Dry in this case.1 The func-
tion legal returns a Boolean telling if the occurrence is
allowedunder somebehavior specification.The expression
says that if an occurrence of Paint is allowed, then an oc-
currence ofDry immediately after it is allowed.The part of
the occurrence tree inFig. 3 in the dashed line is permitted
under this constraint. The expression is not as strong as
the original intention that Dry must always follow Paint,
which requires additional constraint against other activi-
ties being legal after Paint. See Expression 26 in Sect. 7.

(activity Paint)

(activity Dry)

(forall (?occPaint)

(implies (and (occurrence_of ?occPaint Paint)

(legal ?occPaint))

(legal (successor Dry ?occPaint))))

Expression 1: Constraint for Fig. 3

The original UML specification of ChangeColor Fig. 1,
however, is only intended to constrain those occurrences
of Paint and Dry that happen in executions of Change-
Color, not all occurrences of Paint and Dry that ever
happen, as in Expression 1. PSL provides a representa-

1 The UML model in Fig. 2 defines successor as a binary asso-
ciation for simplicity. Using this model, the equivalent OCL for
Expression 1 would be:

Context Occurrence inv: self.allinstances->forall(occ1 |
occ1.occurrence_of = Paint and legal(occ1)

implies successor->exists(occ2 | occ2.occurrence_of = Dry
and legal(occ2)))

Fig. 4. PSL concepts for behavior composition

tion of activity composition for this purpose, as addressed
in the next section.

3.2 Subactivities

PSL activities may be composed of others, which means
that the execution of one activity may involve the ex-
ecution of another. This is represented by the subac-
tivity relation shown in the upper right of Fig. 4. Sub-
activities may be executed during an occurrence of the
superactivity. Activity is factored into primitive and
complex, which are activities that may have subactivities,
and activities that may not, respectively. Occurrence
is subtyped the same way.2 The successor relation is re-
stricted to occurrences of primitive activities, following
the PSL principle of representing runtime traces at the
most complete and detailed level.

(activity ChangeColor)

(subactivity Paint ChangeColor)

(subactivity Dry ChangeColor)

Expression 2: Subactivities from Fig. 1

The ChangeColor subactivities are written in Expres-
sion 2. It means that the executions of ChangeColor may
be composed of executions of Paint and Dry, but does not
specify what order they occur in, or even that they occur

2 Complex activities do not have an explicit relation in PSL, even
though it is included in our conceptual model for explanatory pur-
poses. It is implied by the subactivity relation and could be added
to PSL if needed.

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

at all. An execution of ChangeColor conforming to the
statements has the following possible traces:

– Paint, Dry
– Dry, Paint
– Paint
– Dry
– (traces with repetitions of above)
– (nothing)

Executions of complex activities, like ChangeColor, are
called complex occurrences. A complex occurrence is
represented by selecting primitive occurrences of sub-
activities from a single branch of the occurrence tree.
The relation between complex and primitive occur-
rence is represented in the conceptual model as the
subactivity_occurrence relation between Primi-
tiveOccurrence and ComplexOccurrence, as
shown in Fig. 4.3,4 Figure 5 presents it graphically by en-
circling the subactivity occurrences of ChangeColor and
ConstructHouse with dashed lines.
Complex occurrences are limited to a single branch of

the occurrence tree because any given execution of a com-
plex activity will perform a completely defined set of steps
in a completely defined order. If a complex activity has
some indeterminacy, as happens if there is concurrency in
the flow model, then each branch is a separate occurrence
of the complex activity. See Figs. 14 and 16 in Sect. 5.1.
The branching shown in Fig. 5, for example after Dry on
the right, represents interrupted activities. These will be
discussed in a later article.

3 Complex occurrences do not have an explicit relation in PSL,
even though it is included in our conceptual model for explanatory
purposes. It is implied by the subactivity_occurrence relation
and could be added to PSL if needed.
4 The subactivity relations for ChangeColor are equivalent to the
constraint:

(forall (?occChangeColor)

(implies (occurrence_of ?occChangeColor ChangeColor)

(forall (?subOcc)

(implies (subactivity_occurrence ?subOcc

?occChangeColor)

(or (occurrence_of ?subOcc Paint)

(occurrence_of ?subOcc Dry))))))

Fig. 5. Occurrence tree with complex occurrences

Occurrences that are not part of the activity may hap-
pen between subactivity occurrences. For example, there
may be other occurrences between painting and drying
that are not part of ChangeColor, even though painting
and drying are part of a single ChangeColor execution,
as shown on the left side of Fig. 5. This reflects the prin-
ciple that the occurrence tree represents everything that
can possibly occur at runtime, which might include other
activities happening while ChangeColor is executing.
A primitive occurrence may belong to more than

one complex occurrence, in part because complex activ-
ities can be broken down into other complex activities.
Figure 5 shows this with Dry on the right under both
ChangeColor and the larger ConstructHouse activity oc-
currences.
The UML diagram for ChangeColor in Fig. 1 does not

commit to whether Paint and Dry break down further
into other behaviors, but PSL requires that some activ-
ities are chosen as primitive. This is because primitive
activities give a complete picture of runtime effects of the
specification. Each sequence of primitive activity occur-
rences is a possible execution trace, and all sequences to-
gether represent everything of concern that can possibly
happen at runtime.
However, the choice of what level of detail to take

as primitive depends on the application. For example,
a planning system for robots may treat the activity of
moving a robot arm as primitive, but a mechanical sys-
tem for the robot will break this down into finer-grained
electro-mechanical behaviors. PSL does not dictate what
level of detail should be primitive, and it is an area of fu-
ture work in PSL to support multiple levels of abstraction
at once. In this example, we assume Paint and Dry are
primitive, shown in Expression 3.

(primitive Paint)

(primitive Dry)

Expression 3: Primitive activities from Fig. 1

4 Ordered processes

This section addresses constraints on sequences of subac-
tivity execution, building on the specification of activities,
subactivities, and occurrences described in the previous
sections. Section 4.1 describes the strong and weak forms
of sequences supported in PSL, a distinction that adds ex-
pressiveness applied to behavior classification in Sect. 6.
Section 4.2 proposes an extension to PSL for object flow
and shows how to parameterize activities to use it. Sec-
tion 4.3 covers alternative flows and Sect. 4.4 shows how
timing constraints on sequences are expressed in PSL.

4.1 Complete and partial sequencing

A common interpretation of Fig. 1 is that ChangeColor
will result in an execution of Paint and then immedi-
ately an execution of Dry, with no other execution in

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

between. This is one answer to the first question in
Sect. 1. The interpretation is represented in PSL using the
next_subocc relation between primitive occurrences,
shown in Fig. 6, an extension of the model in Fig. 4. It se-
quences subactivity occurrences under a complex activity
occurrence.
The next_subocc relation is applied with quantifi-

cations over all the complex occurrences of the activity
being constrained, as shown in Expression 4.5 It says that

5 The legal predicate is implied by next_subocc in other
axioms.

Fig. 6. PSL flow concepts

(forall (?occChangeColor)

(implies

(occurrence_of ?occChangeColor ChangeColor)

(exists (?occPaint ?occDry)

(and (occurrence_of ?occPaint Paint)

(occurrence_of ?occDry Dry)

(subactivity_occurrence ?occPaint ?occChangeColor)

(subactivity_occurrence ?occDry ?occChangeColor)

(next_subocc ?occPaint ?occDry ChangeColor)))))

Expression 4: Control flow from Fig. 1 using next_subocc

Fig. 7. Conformance to next_subocc and min_precedes

all occurrences of ChangeColor will have occurrences of
Paint and Dry that happen one after the other, with no
other subactivities of ChangeColor in between. For ex-
ample, the right side of Fig. 7 shows a complex occurrence
of ChangeColor that is illegal under Expression 4. How-
ever, the next_subocc relation allows other activities
between Paint and Dry as long as they are not executing
under ChangeColor, as shown on the left side of Fig. 7.
Another interpretation of the UML control flow link

is that additional activities could occur between Paint
and Dry under ChangeColor. In this case the specification
is only intended as a general constraint on ChangeColor

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

(forall (?occChangeColor)

(implies

(occurrence_of ?occChangeColor ChangeColor)

(exists (?occPaint ?occDry)

(and (occurrence_of ?occPaint Paint)

(occurrence_of ?occDry Dry)

(subactivity_occurrence ?occPaint ?occChangeColor)

(subactivity_occurrence ?occDry ?occChangeColor)

(min_precedes ?occPaint ?occDry ChangeColor)))))

Expression 5: Control flow from Fig. 1 using min_precedes

(forall (?occChangeColor)

(implies

(occurrence_of ?occChangeColor ChangeColor)

(exists (?occPaint ?occDry)

(and (occurrence_of ?occPaint Paint)

(occurrence_of ?occDry Dry)

(subactivity_occurrence ?occPaint ?occChangeColor)

(subactivity_occurrence ?occDry ?occChangeColor)

(min_precedes ?occPaint ?occDry ChangeColor)

(root_occ ?occPaint ?occChangeColor)

(leaf_occ ?occDry ?occChangeColor)))))

Expression 6: Roots and leaves for Fig. 1

and not a complete definition. It is represented in PSL
using the min_precedes relation between primitive oc-
currences, as shown in Expression 5. It says that Paint
must happen before Dry under ChangeColor, but allows
other behaviors under ChangeColor to occur in between.
Both sides of Fig. 7 are legal under this constraint. In
logical terms, min_precedes is the transitive closure of
next_subocc. Both order subactivity occurrences under
a complex occurrence, so are restricted to a single branch
of the occurrence tree.
The actual interpretation in UML 2 is ambiguous re-

garding next_subocc versus min_precedes, because
UML 2 supports behavior redefinition, in which an ac-
tivity can be changed arbitrarily, either by inheritance
through a class hierarchy, or by direct redefinition. How-
ever, the semantics of next_subocc andmin_precedes
can be used to control arbitrary redefinition for particular
behaviors. See Sect. 6.
The UML diagram for ChangeColor in Fig. 1 shows

control links between an initial node and Paint, where the
initial node is shown as a dot, and also between Dry and
a final node, shown as a bullseye. Initial and final nodes are
called control nodes in UML 2, and do not support behav-
iors. They only mark the beginning and end of the flows.
The PSL versions of these focus on runtime execution by
using the relations root_occ and leaf_occ to indicate
which subactivity occurrences are at the beginning and
end of a complex occurrence, shown in Expression 6. The
root and leaf occurrences are unique for each complex oc-
currence, as indicated by the multiplicities in Fig. 6.

Since roots and leaves are at the extreme beginning
and end of complex occurrences, Expression 6 does not
allow any other activity to be introduced before Paint or
after Dry under ChangeColor, as shown on the left side of
Fig. 8. Specifying roots and leaves is similar to using the
next_subocc relation in the sense that they prevent in-
troducing new behaviors at particular points in the flow.
It is beneficial if the specification of complex activities

such as ChangeColor are independent of whether the sub-
activities are complex or not. Then Paint and Dry can be
changed to be complex without affecting the constraints
for ChangeColor. Expressions 4, 5, and 6 assume Paint
and Dry are primitive, because it links their occurrences
with next_subocc. We can loosen this constraint by
using next_subocc on the root_occ and leaf_occ
of occurrences of Paint and Dry. These relations identify
the primitive roots and leaves of complex activities, even
if they are deeply nested. For example, in Fig. 5 the root
occurrence of the ConstructHouse execution is the same
as the root of ChangeColor under it. Also, the root and
leaf of a primitive activity occurrence is just itself. Using
these properties of roots and leaves, the quantification
over ChangeColor occurrences can be made independent
of whether the subactivities are complex or not, as shown
in Expression 7.
The last three statements in Expression 7 say:

1. The first occurrence under the Paint occurrence
(which is the Paint occurrence itself if Paint is primi-
tive) is the same as the first occurrence under Change-

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

Fig. 8. Conformance to root_occ

(forall (?occChangeColor)

(implies

(occurrence_of ?occChangeColor ChangeColor)

(exists (?occPaint ?occDry

?rootPaint ?leafPaint

?rootDry ?leafDry)

(and (occurrence_of ?occPaint Paint)

(occurrence_of ?occDry Dry)

(subactivity_occurrence ?occPaint ?occChangeColor)

(subactivity_occurrence ?occDry ?occChangeColor)

(root_occ ?rootPaint ?occPaint)

(leaf_occ ?leafPaint ?occPaint)

(root_occ ?rootDry ?occDry)

(leaf_occ ?leafDry ?occDry)

(root_occ ?rootPaint ?occChangeColor)

(next_subocc ?leafPaint ?rootDry ChangeColor)

(leaf_occ ?leafDry ?occChangeColor)))))

Expression 7: Using roots and leaves for primitive
and complex subactivities

Color. This means painting is the first step in Change-
Color.

2. The last occurrence under Paint is just before the first
occurrence under Dry. This means drying happens
after painting.

3. The last occurrence under Dry is the same as the last
occurrence under ChangeColor. This means drying is
the last step in ChangeColor.

Expression 7 has the same meaning as Expression 6,
but works whether Paint and Dry are primitive or com-
plex. Any expression constraining the execution order

Fig. 9. Example UML object flow

of primitive activities can be generalized in this way by
using roots and leaves instead.

4.2 Object flow and parameterized activities

Most process models support the notions of input and
output, which are data or objects provided to a behav-
ior execution before it starts, and data produced when
it finishes, respectively. Figure 9 shows an example using
one of the UML 2 notations for object flow, where cars
flow between a factory and trucking process. PSL sup-
ports the concept of objects participating in an activity

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

(forall (?flowObject ?occ2)

(implies (input ?flowObject ?occ2)

(or (exists (?occ1 ?activity)

(and (output ?flowObject ?occ1)

(min_precedes ?occ1 ?occ2 ?activity)))

(exists (?occ)

(and (input ?flowObject ?occ)

(subactivity_occurrence ?occ2 ?occ))))))

Expression 8: General constraint on inputs and outputs

execution, but not specifically as inputs or outputs. This
section suggests that they are independent of other PSL
concepts and proposes an extension. It also describes pa-
rameterized activities so inputs and outputs can vary by
each occurrence of an activity.
Although inputs and outputs are taken as basic in pro-

cess modeling, it is less obvious from the point of view
of runtime execution that these are primitive concepts,
rather than derivations from existing ones. At first glance
it seems like an input is any object participating in an
activity occurrence that also participates in some other
occurrence earlier in time, and the reverse for output.
However, such an object is not always an input or an
output. For example, suppose a factory and trucking com-
pany use the same forklift rental service and happen to
use the same individual forklift to bring the car to the
loading dock and remove it from the loading dock, with
the forklift returned to the rental company in between.
Both processes use the same forklift, one after the other,
but the factory is not providing the forklift to the truckers
as in input.
Another straightforward approach is to use precondi-

tions and postconditions, which PSL supports on activity
executions. Input can be defined as a kind of precondi-
tion on an occurrence requiring a particular object to be
available to the execution in some specified way, and to
define an output as a postcondition that a particular ob-
ject is available in some specified way from the execution
to participate in other executions. For example, a factory
might output a car by putting it on a dock, which is picked
up as input by a trucking activity. The postcondition for
the factory activity is that cars are on the dock, which is
also the precondition for the trucking activity. However,
the particular way an output is provided to an input, the
dock in this example, is too specific a constraint for in-
put and output. The factory and trucking processes may
be changed to use the front driveway as the point of ex-
change, but this does not change the inputs and outputs
of the factory and trucking activities, which are still cars.
Inputs and outputs must be independent of the defin-
ition of the behavior taking the inputs and providing the
outputs.
These examples suggest that the notions of input

and output are justifiably primitive for a language de-
scribing runtime execution, in particular they cannot

be reduced to existing PSL concepts such as ordering
and pre/postconditions of activity occurrences. The re-
lation to these existing concepts provides constraints
we can use to make the formalization more specific.
For example, activities requiring input objects must be
executed after others providing those objects as out-
puts, or to be due to execution of a complex activity
having the object as in input, as defined in Expres-
sion 8. It uses the weaker min_precedes ordering, but
the stronger next_subocc relation can be stated sep-
arately as needed.6,7 With these definitions, inputs and
outputs of activities can be defined in terms of their
occurrences, for example in Expression 9, and used in
object flow specifications as in Expression 10, which de-
fines the process of Fig. 9 as a complex activity called
CarIndustry.
More work is in progress on formalizing inputs and

outputs, for example to relate them to pre/postconditions,
goals, implementation, and partial behavior specification.
There are also other application areas from which to draw
examples, such as embedded real-time. These will be re-
ported in a separate article.
In usual PSL fashion, the expressions so far in this

section refer to particular runtime objects rather than
classes. The PSL core supports only “ground” activities,
that is, those with specific objects as inputs and outputs,
rather than classes of objects. A ground activity operates
the same way each time it occurs. For example, a ground
activity for picking up an object would either pick up the
same object each time it occurred, or go through the same
decision process about which object to pick up. In the fac-

6 The axiom allows flows across activities, because ?activity
could be a wider complex activity than the one immediately
containing the source and target of the flow, or even one that
partially overlaps. Most flow models do not allow these, so the
axiom can be tightened to prevent it. This is another unstated
characteristic of flow models that PSL can disambiguate and use
for addtional expressiveness. This will be addressed in future
work.
7 Other constraints are sometimes applied to data flow, for ex-
ample, to prevent two inputs from using the data or objects from
the same output. These relate to issues of resource contention
that are not addressed by the above expressions. For example,
a phone number may be output from one activity and input to
multiple others, whereas a depletable object like fuel may not.
PSL has additional relations to address resource contention and
consumption.

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

(forall (?occFactory)

(implies (occurrence_of ?occFactory Factory)

(exists (?car)

(and (Car ?car)

(output ?car ?occFactory)))))

(forall (?occTrucking)

(implies (occurrence_of ?occTrucking Trucking)

(exists (?car)

(and (Car ?car)

(input ?car ?occTrucking)))))

Expression 9: Constraints on input and output
for specific activities

(forall (?occCarIndustry)

(implies

(occurrence_of ?occCarIndustry CarIndustry)

(exists (?occFactory ?occTrucking ?car)

(and (occurrence_of ?occFactory Factory)

(occurrence_of ?occTrucking Trucking)

(subactivity_occurrence ?occFactory

?occCarIndustry)

(subactivity_occurrence ?occTrucking

?occCarIndustry)

(output ?car ?occFactory)

(input ?car ?occTrucking)

(next_subocc ?occFactory ?occTrucking

CarIndustry)))))

Expression 10: Object flow constraints using input and output

tory example above, the same car would be output at each
execution of Factory.
Most process models define activities that operate dif-

ferently at each occurrence, usually based on the inputs
they receive, and consequently also provide varying out-
puts. In PSL these are represented as ground activities,
one for each pair of input and output instances. Rather
than explicitly enumerate ground activities for all pairs
of input and output instances, a function can be defined
that produces them. Expression 11 defines a function
Trucking that yields a trucking activity parameterized by
a car to move and a receipt for the cost.

(forall (?x ?y)

(iff (and (Car ?x)

(Receipt ?y))

(activity (Trucking ?x ?y))))

(forall (?occ)

(implies (occurrence_of ?occ (Trucking ?x

?y))

(and (input ?x ?occ)

(output ?y ?occ))))

Expression 11: Parameterized activities

With similar axioms for Factory to define its output,
the occurrence_of statements in Expression 10 for
CarIndustry are replaced with Expression 12.

(occurrence_of ?occFactory (Factory ?car))

(occurrence_of ?occTrucking (Trucking ?car

?receipt))

Expression 12: Using parameterized activities
in Expression 10

where the variable ?receipt is also existentially quanti-
fied.8

The definitions of Factory and Trucking use the input
and output relations to refer to the particular objects re-
quired and provided by executions. The question of how
exactly objects are exchanged as inputs and outputs, for
example whether the cars are on the dock or driveway, is
a matter of system design, and is not restricted by the in-
put and output relations. This is analogous to choosing
a network protocol to exchange information after the di-
rection and kind of information flow has been determined.
One design might reduce coordination overhead between

8 The input/output axiom does not require that the ?receipt
output is used as an input, so it does not affect Expression 10.

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

the factory and trucks, for example, by using the cars’
GPS systems to tell where they should be picked up. An-
other design might reduce cost by choosing a constant
location. The particulars of the exchange are detail added
under the abstraction of input and output.

4.3 Decision points and merges

UML activity models, like all flow languages, support
flows that split and come together. For example, the run-
time effect of UML decision points is to choose between
alternative flow directions, and UML forks to initiate con-
current flows. These are called control nodes in UML 2
because they coordinate the execution of behaviors. Fig-
ure 10 shows a decision point, notated as the diamond on
the left. Exactly one path from painting to cleanup will
be taken by any particular execution of the model, de-
pending on the result of inspection.9 The diamond on the
right is called a merge. Any control or data arriving on
its incoming edges is passed to its outgoing edge. Decision
points and merges are distinguished notationally by the
number of incoming and outgoing edges.
To support flow choices, PSL has constructs for repre-

senting aspects of the state of the world before and after
each activity execution in the occurrence tree.These states
are more general than UML states, which only apply to
specific objects. The PSL representation of decisions uses
states to express which branches of the occurrence tree are
allowed under the specification. The relation holds tells

9 UML does not define semantics for models that have no guards,
or for guards that are not mutually exclusive.

Fig. 10. UML decision point and merge

Fig. 11. Occurrences for Fig. 10 and Expression 13

what state of the world is the case after a specific activ-
ity execution, that is, at one point in the occurrence tree.
Expression 13 below uses it to specify what executions
will occur following painting. Only one of the two impli-
cations will constrain the occurrences in each execution of
ChangeColor, because the antecedent of the implications
are written to exclude each other in Expression 13.
It is important to distinguish splits in a flow model

from branching in the PSL occurrence tree. In the de-
cision point example above, each execution of Change-
Color will result in a sequence of activity occurrences
that has no alternatives, because at each execution the
guard will choose exactly one path. Even though the flow
model merges flows, the branches of the occurrence tree
never join back together. Each point in the execution has
a unique series of previous activity executions leading to
it, as shown in Fig. 11.

4.4 Timing constraints

There is no restriction so far on howmuch time can elapse
between the executions of Paint and Dry under Change-
Color (question 2 from Sect. 1). This is true in UML
also, but the common interpretation is that there will be
some limit to how much time passes, even if this limit is
not given. Regardless of the specification language, these
expectations should be explicitly added if the implemen-
tation is required to fulfill them. PSL has functions for the
begin and end time of behavior executions, see example in
Expression 14.
This means that the amount of time between the end-

ing of the Paint occurrence and the beginning of the Dry

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

(state InspectionOK)

(state InspectionFailed)

(forall (?occChangeColor)

(implies

(occurrence_of ?occChangeColor ChangeColor)

(exists (?occPaint ?occCleanUp)

(and (occurrence_of ?occPaint Paint)

(subactivity_occurrence ?occPaint ?occChangeColor)

(occurrence_of ?occCleanUp CleanUp)

(subactivity_occurrence ?occCleanUp

?occChangeColor)

(root_occ ?occPaint ?occChangeColor)

(implies

(and (holds InspectionOK ?occPaint)

(not (holds InspectionFailed ?occPaint)))

(exists (?occDry)

(and (occurrence_of ?occDry Paint)

(subactivity_occurrence ?occDry

?occChangeColor)

(next_subocc ?occPaint ?occDry

ChangeColor)

(next_subocc ?occDry ?occCleanUp

ChangeColor))))

(implies

(and (holds InspectionFailed ?occPaint)

(not (holds InspectionOK ?occPaint)))

(exists (?occRecycle)

(and (occurrence_of ?occRecycle Recycle)

(subactivity_occurrence ?occRecycle

?occChangeColor)

(next_subocc ?occPaint ?occRecycle

ChangeColor)

(next_subocc ?occRecycle ?occCleanUp

ChangeColor))))

(leaf_occ ?occCleanUp ?occChangeColor)))))

Expression 13: Flow constraints for Fig. 10

(forall (?occChangeColor)

(implies

(occurrence_of ?occChangeColor ChangeColor)

(exists (?occPaint ?occDry)

(and (occurrence_of ?occPaint Paint)

(occurrence_of ?occDry Dry)

(subactivity_occurrence ?occPaint ?occChangeColor)

(subactivity_occurrence ?occDry ?occChangeColor)

(next_subocc ?occPaint ?occDry ChangeColor)

(lesser (timeduration (endof ?occPaint)

(beginof ?occDry))

10)))))

Expression 14: Time constraint

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

Fig. 12. UML time constraint

occurrence must be less than 10, but does not specify
the unit of measure. PSL leaves units of measure open
for other extensions to define and add to Expression 14.
UML 2 also has a time model and a way to refer to the be-
gin and end time of the execution. The notation for this is
not standardized, but might be shown as in Fig. 12.

5 Unordered processes

This section addresses unordered activity execution. It
is a benefit of the PSL occurrence tree that the in-
tentional absence of ordering constraints is represented
as just another kind of constraint, because unordered
execution creates more legal branches to account for.
PSL distinguishes two kinds of unordered execution, the
weaker form described in Sect. 5.1 and the stronger form
in Sect. 5.2.

5.1 Forks and joins

UML forks are another kind of split in flow, but unlike
decisions, forks initiate multiple concurrent flows, rather
than choose among them. Figure 13 shows a fork, no-
tated as a vertical bar on left. The executions of Dry and
Cleanup can occur in any order, or can overlap in time.
However, Paint must complete execution before Dry or
Cleanup start. The vertical bar on right is called a join.
Control or data must arrive on both incoming edges to be
passed to the outgoing edge. This means Notify can only
start after Dry and Cleanup are finished. Forks and joins
are distinguished notationally by the number of incoming
and outgoing edges.
In the example above, the fact that there is no con-

straint on the ordering of execution between Dry and
Cleanup means that when ChangeColor is executed
there must be multiple possible complex occurrences of
ChangeColor to cover the various ordering combinations.
This covers multiple branches of the occurrence tree,

Fig. 13. UML fork and join

as shown in Fig. 14. It illustrates the weak form of un-
ordered execution, which prevents Dry and Cleanup from
overlapping in time (compare to concurrent activities
in Sect. 5.2). Specifically, next_subocc yields multiple
occurrences under the same complex activity, one for
each complex occurrence. For example, the Paint occur-
rence in Fig. 14 has two next_subocc occurrences under
the ChangeColor activity under separate complex oc-
currences. Complex occurrences that cover the possible
orderings of a single executions are collectively called an
activity tree.
To represent this in PSL, we could use the techniques

already introduced for decision points, quantifying over
all occurrences of ChangeColor with a disjunction to re-
quire all combinations of runtime execution order as pos-
sibilities. This is fine for a simple flow model, but the
number of orderings becomes very large if there are many
steps on the tines of a fork. We could define a “macro”
facility that expanded out to all the combinations. How-
ever, the explicit representation of constraints or ab-
sence of them would disappear when the macros were
expanded.
Another approach is to define relations expressing

patterns in the tree corresponding to the constraints.
These patterns appear most clearly when using control
constructs individually, as in the example of Fig. 15. This
simple use of fork and join corresponds to the PSL tree
shown in Fig. 16. Notice that every occurrence has oc-
currences below it (next_subocc) that are the same
activities as the ones next to it at the same level of the

Fig. 14. Activity tree

Fig. 15. Simple UML fork and join

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

Fig. 16. Activity trees for Fig. 15

(forall (?occ ?activity)

(iff (sibling_iso_next_subocc ?occ ?activity)

(forall (?occ1)

(iff (next_subocc ?occ ?occ1 ?activity)

(exists (?occ2)

(and (sibling ?occ ?occ2 ?activity)

(iso_occ ?occ1 ?occ2)))))))

(forall (?occ1 ?occ2 ?activity)

(iff (sibling ?occ1 ?occ2 ?activity)

(or (exists (?occ3)

(and (next_subocc ?occ3 ?occ1 ?activity)

(next_subocc ?occ3 ?occ2 ?activity)))

(and (root ?occ1 ?activity)

(root ?occ2 ?activity)

(exists (?occ4 ?act1 ?act2)

(and (= ?occ1 (successor ?act1 ?occ4))

(= ?occ2 (successor ?act2 ?occ4))))))))

(forall (?occ1 ?occ2)

(iff (iso_occ ?occ1 ?occ2)

(exists (?activity)

(and (occurrence_of ?occ1 ?activity))

(occurrence_of ?occ2 ?activity))))

Expression 15: Relations for identifying patterns in Fig. 16

tree (sibling). For example, Dry on the left has Cleanup
and PutAway under it, which are also the siblings of
Dry. This local characteristic of the tree is a pattern
created by the constraints implicit in Fig. 15. It can be
expressed as a relation sibling_iso_next_subocc that
forces next_subocc activities to be the same as the sib-
ling activities, as shown in Expression 15.
The relations in Expression 15 all refer to the activ-

ity under which the pattern is being defined through the
variable ?activity. However, the occurrences of these
activities must be in the same “grove” of activity trees,
as in Fig. 16, so the options for executing the complex
activity are described at the same point in the occur-
rence tree.We define the same_grove relation using sib-

ling to identify these complex occurrences, as shown in
Expression 16.
The above relations are used in Expression 17 to define

the pattern in Fig. 16.
Expression 17 ensures that all occurrences under

groves of ChangeColor executions satisfy sibling_iso_
next_subocc. This technique produces more concise
expressions by identifying patterns that can be defined
locally at each occurrence in groves of ChangeColor
occurrences, sibling_iso_next_subocc in this case.
Previously we achieved the same thing by constrain-
ing each complex occurrence of ChangeColor individu-
ally with a potentially large disjunction for alternative
paths.

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

(forall (?occ1 ?occ2)

(iff (same_grove ?occ1 ?occ2)

(exists (?activity)

(and (occurrence_of ?occ1 ?activity)

(occurrence_of ?occ2 ?activity)

(sibling (root_occ ?occ1) (root_occ ?occ2)

?activity)))))

Expression 16: Constraint for “grove” of activity trees

(forall (?occChangeColor)

(implies

(occurrence_of ?occChangeColor ChangeColor)

(forall (?a ?s ?occ1)

(implies (and (same_grove ?occ1 ?occChangeColor)

(occurrence_of ?occ1 ChangeColor)

(subactivity_occurrence ?s ?occ1))

(sibling_iso_next_subocc ?s ChangeColor)))))

Expression 17: Constraint for pattern in Fig. 16

The pattern for Fig. 13 is more complex, because the
linear orderings, for example between Paint and Dry,
mean that sibling_iso_next_subocc does not always
apply. The same is the case for conditional splits, as in
Fig. 10, which cause some of the executions of Change-
Color occurrences to have different suboccurrences than
other executions of ChangeColor. These require a new
relation similar to min_precedes to allow the linear or-
derings to be inserted in the sibling_iso_next_subocc
pattern, and to allow some of those orderings to be ex-
clusive of each other. These patterns will be described in
a future article.

5.2 Concurrency

As described in Sect. 3.1, each branch of the occurrence
tree represents a possible runtime trace, and each step in
the execution does not overlap in time with other steps
before or after it on the branch. This guarantees that ef-
fects of the primitive activities are composable. If any
steps overlapped, they might have unpredictable interac-
tions that would cause the branch to have equally unpre-
dictable results. For example, the behaviors of lifting one
side of a book and lifting the other side will have differ-
ent results when done separately than together, such as
whether an object on the book will fall off. The effects of
concurrently executing activities cannot be mechanically
composed the way effects of subactivities in a complex ac-
tivity can.
To represent concurrent activities, PSL aggregates

them into one activity. This way the interactions between
them can be captured as the effect of a single behav-
ior separate from any of the concurrent activities. This
is the strong form of unordered execution in PSL. The

aggregated activity is no longer primitive, since it is cre-
ated from others, but is also not complex, because the
effects are not composable. A new class of Activity
called AtomicActivity10 is introduced for it, as shown
in Fig. 17, a refined version of Fig. 4.
Only atomic occurrences can participate in the suc-

cessor relation (the occurrence tree), and they cannot
have subactivity occurrences, since the concurrent ac-
tivities aggregated under an atomic no longer produce
distinct occurrences with separate effects. Concurrent
activities are treated as one for the purposes of rep-
resenting runtime execution. This is shown in Fig. 17
by replacing PrimitiveOccurrence from Fig. 4 with
AtomicOccurrence. For simplicity, PSL represents
concurrent activities as subactivities of an atomic ac-
tivity. This is shown in Fig. 17 by promoting the sub-
activity association to Activity. Primitive activities
are atomic, and consequently are always concurrent with
themselves.
A simple application of concurrency is to alter the

PSL expression for Fig. 1 to allow other activities to ex-
ecute during painting that are external to the process
of changing color, but that could happen at the same
time. These “external” subactivities can be introduced by
loosening the constraint in Expression 4 to allow the pos-
sibility of another activity executing concurrently with
Paint. This is an answer to question 4 in Sect. 1. A con-
venience function conc is defined in PSL that produces

10 This is not “atomic” in the sense of a database transaction,
which allows interruption and rollback. When atomic PSL activi-
ties occur, they always occur completely, because they are a single
node in the occurrence tree. There is a separate PSL extension for
interruptable activities, which are represented as a kind of complex
activity. See discussion of Fig. 5 in Sect. 3.2.

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

Fig. 17. PSL concepts with concurrency

an activity that is the concurrent aggregation of two
others. We can use it to replace the occurrence statement
for Paint in Expression 4 with the fragment in Expres-
sion 18.11 The complex occurrences shown in Fig. 18 sat-
isfy the revised constraint. Since the subactivities of an
atomic activity are concurrent, the use of conc can be re-
placed with an explicitly defined concurrent aggregation
using subactivities. However the conc function enables
quantification over aggregated activities, as in Expres-
sion 18, rather than being restricted to a predefined set of
subactivities.

11 If Paint or the external activity is complex, then concurrent ag-
gregations must be created for every pair of the primitive activities
underneath them, since conc only applies to primitives. This will
be shown in future work.

Fig. 18. ChangeColor occurrences with a concurrent external
activity

(or (occurrence_of ?occPaint Paint)

(exists (?activity)

(occurrence_of ?occPaint (conc ?activity

Paint))))

Expression 18:
External concurrent activities in Expression 4

Concurrent activities can be applied to UML fork and
joins, for example in Fig. 13 to support Dry and Clean
executions that overlap in time. The occurrence tree can
be constrained to include both overlapping and nonover-
lapping executions, but the expressions are rather com-
plicated and will be addressed in future work. Another
topic for the future is to apply the two kinds of unordered
execution to formalize the semantics of UML state ma-
chines. The semantics of orthogonal regions is a com-
bination of overlapping and nonoverlapping unordered
execution, due to partial synchronization under the run-
to-completion principle. This little-known fact about the
execution of UML state machines could be made explicit
using PSL.

6 Behavior classification

This section gives an example of how reducing ambiguity
increases expressiveness and power in a language. It ap-
plies the PSL concepts from Sect. 4.1, which were used to
disambiguate UML control flow, to enable classification
of behavior. Partial execution sequences are used to in-
crementally add constraints in a behavior taxonomy. The

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

section first covers existing UML capabilities for behavior
classification. It concludes with some other applications
of partial and complete sequencing.
Behaviors in UML 2 are classes and their executions

are instances. For example, ChangeColor is a class and
each time it is executed a new instance is created, and
when it is finished executing, the instance is destroyed.
Like all classes, behaviors can have attributes, for ex-
ample for how long the instance has been executing, and
operations for suspending it. Applications such as work-
flow and operating systems treat processes as objects, to
manipulate and monitor them [31].
Also like classes, behaviors constrain their instances

and can form subclass hierarchies by incrementally
adding constraints. For example, we can create a hi-
erarchy of food service behaviors, as shown in Fig. 19,
adapted from [33]. The food service process gives general
constraints, such as preparing food must happen before
eating it, while specializations like fast food service add
others, such as the food is eaten after it is paid for. In
a behavior taxonomy, the same execution is an occurrence
of multiple activities at once. For example, an execution
of a fast food service process is also an execution of food
service process.
PSL facilitates behavior specialization because it pro-

vides for declaring partial constraints on runtime execu-
tion, which can be incrementally combined in a behavior
class hierarchy. In particular, the min_precedes rela-
tion can be used to constrain a process execution without
specifying every step and flow link in the process. For
example, we might specify that the food service process
above must include ordering, preparing, serving, eating,
and paying, but not necessarily in exactly that order. The
constraints might be:

– Ordering, preparing, and serving always happen be-
fore eating.
– Serving happens after preparing and ordering.
– Paying can happen anytime in the process.

In PSL, this is expressed as shown in Expression 19.
Expression19 ismore complicated than those inSect. 4.1

because it is not only declaring constraints on fast food
processes, but also other processes that might be special-
ized from it. That is why it has an existential quantifica-
tion, to ensure that the appropriate subactivities occur
in those specializations, and a universal quantification, to
ensure that all occurrences of the subactivities obey the

Fig. 19. Behavior taxonomy

ordering constraints. Without the existential the special-
izations may fail to perform some steps. For example, the
restaurant food service could omit eating. Without the
universal the constraints in specializations might refer to
different occurrences of the steps referred to by food ser-
vice in general. For example, the constraint in restaurants
that paying happen after eating could be satisfied by an
eating step that happens before ordering.12,13

Once the general food service process is specified, we
define the additional sequencing constraint on eating and
paying for fast food service in Expression 20.
The process for a full service restaurant requires pay-

ing to happen after eating, as shown in Expression 21.
And payment happens first at church suppers, as

shown in Expression 22.
Finally, to specify that the constraints on food ser-

vices apply to its specializations, we require all occur-
rences under FastFoodService to also be under FoodSer-
vice, and so on. This is facilitated by defining a relation
activity_specialization for specializing PSL activi-
ties that requires all occurrences under one complex ac-
tivity to also be occurrences under another, as shown in
Expression 23.14 The activity_specialization relation
is used in the example as shown in Expression 24.
UML 2 does not support the semantics described

above, but it provides for behavior redefinition, that is,

12 If some steps should be optional, for example, a buffet might
not have the ordering step or the serving step, then those can be
omitted from the existential quantification. The expressions using
the subactivity relation are fine as is, because they only define
activities that might be executed, rather than those that must be
executed.
13 Another approach is to constrain the suboccurrences to be of
the expected kinds:

(forall (?s)

(implies

(subactivity_occurrence ?s ?occFoodService)

(or (= ?s ?occOrder)

(= ?s ?occPrepare)

(= ?s ?occServe)

(= ?s ?occEat)

(= ?s ?occPay))))

This restricts the occurrences in all food services, forcing the oc-
currences of eating, ordering, and so on to be the same in all
specializations. This rather large hammer prevents using the same
subactivity twice in food service activities, or adding other activi-
ties not listed in the constraint.
14 An alternative is to classify activities themselves, rather than
complex occurrences. This will be explored in future work. The ap-
proach used in the paper is chosen because it corresponds to the
classificiation of executions in UML.

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

(activity Order)

(activity Prepare)

(activity Serve)

(activity Eat)

(activity Pay)

(subactivity Order FoodService)

(subactivity Prepare FoodService)

(subactivity Serve FoodService)

(subactivity Eat FoodService)

(subactivity Pay FoodService)

(forall (?occFS)

(implies

(occurrence_of ?occFS FoodService)

(and

(exists (?occOrder ?occPrepare ?occServe ?occEat ?occPay)

(and (occurrence_of ?occOrder Order)

(occurrence_of ?occPrepare Prepare)

(occurrence_of ?occServe Serve)

(occurrence_of ?occEat Eat)

(occurrence_of ?occPay Pay)

(subactivity_occurrence ?occOrder ?occFS)

(subactivity_occurrence ?occPrepare ?occFS)

(subactivity_occurrence ?occServe ?occFS)

(subactivity_occurrence ?occEat ?occFS)

(subactivity_occurrence ?occPay ?occFS)))

(forall (?occOrder ?occPrepare ?occServe ?occEat ?occPay)

(implies

(and (occurrence_of ?occOrder Order)

(occurrence_of ?occPrepare Prepare)

(occurrence_of ?occServe Serve)

(occurrence_of ?occEat Eat)

(occurrence_of ?occPay Pay)

(subactivity_occurrence ?occOrder ?occFS)

(subactivity_occurrence ?occPrepare ?occFS)

(subactivity_occurrence ?occServe ?occFS)

(subactivity_occurrence ?occEat ?occFS)

(subactivity_occurrence ?occPay ?occFS))

(and (min_precedes ?occServe ?occEat FoodService)

(min_precedes ?occPrepare ?occServe

FoodService)

(min_precedes ?occOrder ?occServe

FoodService)))))))

Expression 19: Flow constraints for FoodService

(forall (?occFastFoodService ?occEat ?occPay)

(implies

(and (occurrence_of ?occFastFoodService FastFoodService)

(occurrence_of ?occEat Eat)

(occurrence_of ?occPay Pay)

(subactivity_occurrence ?occEat ?occFastFoodService)

(subactivity_occurrence ?occPay ?occFastFoodService))

(min_precedes ?occPay ?occEat FastFoodService)))

Expression 20: Flow constraints for FastFoodService

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

(forall (?occRestaurantService ?occEat ?occPay)

(implies

(and (occurrence_of ?occRestaurantService

RestaurantService)

(occurrence_of ?occEat Eat)

(occurrence_of ?occPay Pay)

(subactivity_occurrence ?occEat

?occRestaurantService)

(subactivity_occurrence ?occPay

?occRestaurantService))

(min_precedes ?occEat ?occPay RestaurantService)))

Expression 21: Flow constraints for RestaurantService

(forall (?occChurchService ?occPay)

(implies

(and (occurrence_of ?occChurchService ChurchService)

(occurrence_of ?occPay Pay)

(subactivity_occurrence ?occPay ?occChurchService))

(root_occ ?occPay ?occChurchService)))

Expression 22: Flow constraints for ChurchSupper

(forall (?aSub ?aSuper)

(iff (activity_specialization ?aSub ?aSuper)

(forall (?occSub)

(implies

(occurrence_of ?occSub ?aSub)

(exists (?occSuper)

(and (occurrence_of ?occSuper ?aSuper)

(forall (?s)

(implies

(subactivity_occurrence ?s ?occSub)

(subactivity_occurrence ?s

?occSuper)))))))))

Expression 23: Definition of activity_specialization

(activity_specialization FastFoodService FoodService)

(activity_specialization RestaurantFoodService FoodService)

(activity_specialization Buffet FoodService)

(activity_specialization ChurchSupper FoodService)

Expression 24: Activity specializations for FoodService

adding and removing elements from the behavior specifi-
cation, such as adding or removing a step in a flowmodel.
This could be used for behavior specialization, if it is re-
stricted to the semantics of activity_specialization,
because behavior redefinition is more general than spe-
cialization. For example, a behavior can be redefined to
add a step between two others, even if the link between
those two does not allow it (next_subocc). The tech-
niques of this section can be used to control behavior
redefinition and give it a semantic basis.

The PSL semantics presented in this section is helpful
in other areas of modeling, such as constraining poly-
morphism. Many behavior specification languages sup-
port runtime decisions about how a task is to be carried
out. For example, a machine might support a polishing
operation, but processes using the machine probably do
not want to dictate how the polishing is done. This indi-
rection enables a task to be carried out in various ways
that may change over time, while preserving the inter-
face of the task to the rest of the system. It also means

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

(implies (holds TooHot ?occServe)

(exists (?occLetCool)

(and (occurrence_of ?occLetCool LetCool)

(subactivity_occurrence ?occLetCool

?occFoodService)

(min_precedes ?occServe ?occLetCool FoodService)

(min_precedes ?occLetCool ?occEat

FoodService))))

(activity LetCool)

(subactivity LetCool FoodService)

Expression 25: Flow constraints for UML Extension Points

the semantics of any specification is inherently ambigu-
ous, since the executed behavior is not determined until
runtime.15 Systems that are truly dynamic in behavior
selection, such as the Common Lisp Object System [17],
are at least amenable to constraints on their effects as
described in this section, even if the ultimate runtime
behavior cannot be determined or even guessed at speci-
fication time.
The techniques in this section are also helpful in for-

malizing UML use cases, which have behaviors and form
classification hierarchies. Extension points in use cases
identify where other behaviors can be inserted as neces-
sary. This is an answer to question 3 in Sect. 1. Conditions
can be placed on when the inserted behavior is executed.
If the use case behavior is a UML activity, the control
links where new behaviors can be inserted have the se-
mantics of min_precedes, and control links that are not
extendable have the semantics of next_subocc. Behav-
iors inserted conditionally are expressed in PSL similar
to optional ones, except using an implication to enforce
the existence of the optional step under certain condi-
tions. For example, an additional element of the top-level
conjunction in Expression 19 might be the one shown in
Expression 25.
Expression 25 uses the PSL holds relation to spec-

ify a state of the world that is true after an activity has
executed (see Sect. 4.3). It determines whether the occur-
rence of FoodService should include a step for letting the
food cool between serving and eating.
PSL can also be used for “client-side” constraints on

operations. For example, UML’s OCL 2 supports post-
conditions on operations that constrain the messages that

15 Most systems do not offer completely unrestricted runtime be-
havior selection. Popular object-oriented languages, for example,
do not permit runtime reclassification of instances, or support
runtime modification of methods in an instance. This means the
behavior resulting from a message to an object of a certain type
will be one of a small set of methods on subtypes of the type of
the object, and often only one. Component-based approaches are
more flexible because a component can be replaced without recom-
pilation. However, once a system is executing and the component is
selected, it usually cannot be changed. For these applications, the
system configurations can be enumerated at specification time, and
tools can support the modeler in traversing through the formaliza-
tions of possible combinations of behaviors.

the method of the operation may send. The techniques in
this section can provide a formalization for OCL 2 used
this way, and increase the breadth of statements that can
be made about messages sent by an operation.

7 Closure

An issue with the PSL behavior specifications so far is
whether they should rule out executions that have ad-
ditional elements than the ones explicitly given in the
specification. For example, Expression 1 says that all legal
occurrences of Paint must have a legal occurrence of Dry
as a successor. However, the expression does not prevent
legal occurrences of other activities to be successors of
Paint also, because the occurrence tree provides for multi-
ple possible successors. This means the expression allows
execution traces where Paint is not followed immediately
by Dry, contrary to the original intention. To be accu-
rate, it requires a kind of “closed world” constraint that
rules out possibilities not included in the specification, as
shown in Expression 26. Even if particular inference en-
gines make the closed world assumption implicitly, it is
beneficial to include closure explicitly in behavior specifi-
cations to ensure they are independent of the engine used.

(forall (?occPaint)

(implies

(and (occurrence_of ?occPaint Paint)

(legal ?occPaint))

(and (legal (successor Dry ?occPaint))

(forall (?otherSuccessor)

(implies

(not (equal ?otherSuccessor

(successor Dry ?occPaint)))

(not (legal ?otherSuccessor)))))))

Expression 26: Closed version of Expression 1

Similarly, the subactivity statements in Expression 2
do not prevent additional subactivities from being added
to the specification later. In particular, a complete infer-
ence engine might introduce new subactivities without
contradicting the specification. This prevents the engine
from deducing, for example, the amount of time Change-

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

Color will take to execute, because it could infer that
other subactivities exist. The closure constraint to pre-
vent other subactivities from being added can be con-
cisely written using the fact that PSL activities are sub-
activities of themselves, as shown in Expression 27.

(forall (?ccSubactivity)

(iff (subactivity ?ccSubactivity ChangeColor)

(or (subactivity ?ccSubactivity Paint)

(subactivity ?ccSubactivity Dry))))

Expression 27: Closed version of Expression 2

If flow constraints are complete enough, then closure is
not needed. For example, using roots and leaves with a se-
ries of next_subocc relations between them, as in Ex-
pressions 7 and 13, gives a complete constraint in which
no other occurrences can be inserted. On the other hand,
partial constraints such as those using min_precedes
in Expressions 5 and 6 intentionally allow extensions
to the specification. If some extensions are not allowed,
these must be explicitly ruled out. For example, in Ex-
pression 19 we might want to prevent the subactivities
of FoodService from happening more than once under
the same complex occurrence. For each subactivity, the
clause in Expression 28 can be added to the outer con-
junct of Expression 19 to eliminate duplicate subactivity
occurrences.

(forall (?occ1 ?occ2 ?activity)

(implies (and (subactivity_occurrence ?occ1

?occFS)

(subactivity_occurrence ?occ2

?occFS)

(occurrence_of ?occ1 ?activity)

(occurrence_of ?occ2 ?activity))

(= ?occ1 ?occ2)))

Expression 28: A closure addition to Expression 19

Closure constraints can be too tight in some cases,
eliminating execution traces that might actually occur.
For example, Expression 18 can be changed to allow only
those concurrent executions of activities that do not in-
terfere with painting. The expression could be tightened
to the one in Expression 29 using PSL’s resource exten-
sion, which represents whether two activities are contend-
ing for the same resource. With this closure, an inference
engine would no longer be able to detect when a set of
processes contend for a resource, because the possibility is
prevented by the specification. However, the processes ac-
tually implemented might contend, because the inference
engine did not alert implementers to that possibility, and
no arrangement was made to prevent it.

(or (occurrence_of ?occPaint Paint)

(exists (?activity)

(and (occurrence_of ?occPaint (conc

?activity Paint))

(not (interfering

?activity Paint)))))

Expression 29: Closed version of Expression 18

Closure is also cumbersome to introduce during the
development of a behavior specification, because more
changes need to be made to add elements. For example,
to add another subactivity to ChangeColor with closure
requires editing the closure constraints as well as the sub-
activity statements.
The issues with closure can be addressed by adding

closure constraints only when needed for inference. Then
they do not burden development and can be adjusted to
account for the information required from the inference
engine. For example, the subactivities of ChangeColor
can be left open until the specification is ready for testing
and inference. If it is required that the engine show where
the contending processes are, then closure constraints for
contention can be omitted.

8 Other approaches

PSL has a simple semantics based on first-order logic. In-
tuitions about executing behaviors are mapped to elem-
ents of well-understood mathematical structures, and we
can prove that these structures are isomorphic to the log-
ical axioms of the PSL. Development within this method-
ology has distinct advantages. The use of mathemat-
ical structures validates that we formalized our intu-
itions on a commonly agreed upon basis. The applica-
tion of first-order logic means that behavior descriptions
based on PSL concepts can support automated reason-
ing with a wide array of theorem provers [15] and con-
straint satisfaction techniques. First-order logic also pro-
vides a framework for specifying semantic mappings be-
tween different software applications [3, 24].
This development methodology can be compared to

other approaches, for example:

– Petri nets is perhaps the most powerful and widely-
known alternative for process modeling [16, 18]. It is
designed to model the synchronization of concurrent
processes.
– Within the artificial intelligence community, the Plan-
ning Domain Definition Language (PDDL) is used
extensively in the Artificial Intelligence Planning Sys-
tems competition [7]. It covers the domain of plan-
ning, including a specification of states, the set of
possible activities, the structure of complex activities,
and the effects of activities.
– The Cognitive Robotics Group at the University of
Toronto proposed the language GOLog as a high-level
robotics programming language [19]. GOLog provides
mechanisms for specifying complex activities as pro-
grams in a second-order language that extends the
axiomatization of situation calculus [28].
– TheWorkflowManagementCoalitiondevelopeda stan-
dard terminology which can serve as a common frame-
work for different workflow management system ven-
dors. The ontology for this effort is the Workflow
Process Definition Language (WPDL) [32].

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

– In the context of the Semantic Web, much work has
been done using the DARPAAgentMarkup Language
(DAML) [14]. In particular, the DAML-S ontology
provides a set of process classes that can be specialized
to describe a variety of Web services [22].
– Work on semantic domains for UML has been ongo-
ing at the Object Management Group (OMG) [1, 30].
These are based on how objects change over time,
using a series of object snapshots to model entities
changing over time. Behavior execution is modeled as
constraints on object snapshots before and after exe-
cution of the behavior.

These approaches to process semantics lack one or
more formal properties of PSL. Petri nets has no stan-
dard, widely agreed upon semantics, and those that exist
are highly complex, and require a sophisticated know-
ledge of advanced areas of mathematics.16 They also have
not been axiomitized in first-order logic. PDDL maps
to commonly understood mathematical structures, but
does not provide the equivalent first-order logic expres-
sions. GOLog describes its mathematical structures infor-
mally and does not prove equivalence to its axiomization.
Languages such as DAML-S and WPDL do not provide
a mapping to mathematical structures to validate their
concepts, and WPDL does not even provide a semantic
domain. The OMG proposals give semantic domains, but
do not validate them with mathematical structures, or
axiomitize them completely in first-order logic.17

9 Summary

This article describes an approach to flow model seman-
tics based on constraining sequences of runtime execu-
tion: the Process Specification Language (PSL). Since
modelers already simulate runtime traces in their minds
to understand the semantics of behavior specifications,
PSL concepts are an intuitive basis for making those in-
tentions precise and machine-interpretable, and disam-
biguating modeling shorthands. This improves commu-
nication between modelers and ensures fidelity of imple-
mentations. Also, more precise semantics reveals distinc-
tions that add expressiveness and power to flow model-
ing, for example the capability to incrementally combine
partial behavior specifications. Behavior specifications in
PSL are expressed in first order logic, making properties
about their runtime execution provable with standard in-
ference engines.

16 The most common approach to semantics for Petri nets is to
map them into linear logic and then exploit one of the semantics
for that [20].
17 A number of narrower issues in comparison can be addressed
in a separate paper. For example, the GOLog and PDDL seman-
tic domains do not include reusable composed processes, so cannot
support reasoning about complex activity occurrences. The se-
quences in the OMG semantic domains do not branch, so they
cannot require indeterminacy, only allow it, and cannot model in-
terrupted or hypothetical processes.

References

1. ActionSemanticsSubmissionTeam(2000)ActionSemantics for
the UML. http://www.omg.org/cgi-bin/doc?ad/2000-08-02

2. Bock C (2003) UML 2 Activity and Action Models. Journal of
Object Technology 2:4, July–August.
http://www.jot.fm/issues/issue_2003_07/column3

3. Ciocoiu M, Gruninger M, Nau D (2001) Ontologies for Inte-
grating Engineering Applications. Journal of Computing and
Information Science and Engineering 1(1):12–22

4. Comon Logic Working Group (2003) Common Logic Stan-
dard. http://cl.tamu.edu, http://cl.tamu.edu

5. Fox MS (1992) The TOVE Project: A Common-sense Model
of the Enterprise, Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems. In: Belli F, Rader-
macher FJ (eds) Lecture Notes in Artificial Intelligence # 604,
Springer-Verlag, pp 25–34

6. Fox MS, Gruninger M (1998) Enterprise Modelling. AI Maga-
zine, AAAI Press, pp 109–121, Fall

7. Ghallab M, Howe A, Knoblock C, McDermott D, Ram A,
Veloso M, Daniel W, Wilkins D (1998) PDDL: The Planning
Domain Definition Language v.2. Technical Report CVC TR-
98-003, Yale Center for Computational Vision and Control

8. Genesereth MR, Fikes R (1992) Knowledge Interchange For-
mat 3.0. Technical Report KSL-92-01, Knowledge Systems
Laboratory, Stanford University

9. Gruninger M (2003) Guide to the Ontology of the Process
Specification Language. In: Staab S (ed) Handbook of Ontolo-
gies in Information Systems, Springer-Verlag

10. Gruninger M (2003) PSL 2.0 Ontology – Current Theories and
Extensions. http://www.nist.gov/psl/psl-ontology/

11. Gruninger M (2004) Model Theory of PSL-Core. To appear in
Technical Report of the Institute for Systems Research at the
University of Maryland, College Park

12. Gruninger M, Menzel C (2003) Process Specification Lan-
guage: Principles and Applications. AI Magazine 24(3):
63–74

13. Hayes P, Menzel C (2001) A Semantics for the Knowledge In-
terchange Format. Workshop on the IEEE Standard Upper
Ontology, IJCAI, Seattle

14. Hendler J, McGuinness DL (2001) DARPA Agent Markup
Language. IEEE Intelligent Systems. 15:72–73

15. Kalman J (2001) Automated reasoning with Otter. Rinton
Press, Princeton

16. Karp R, Miller R (1966) Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing. SIAM
Journal of Applied Mathematics 14(6):1390–1411, November

17. Kiczales G, des Rivieres J, Bobrow D (1991) The Art of the
Metaobject Protocol. MIT Press

18. Peterson J (1981) Petri Net Theory and the Modelling of Sys-
tems. Prentice-Hall

19. Levesque H, Reiter R, Lesperance Y, Lin F, Scherl R (1997)
GOLOG: A logic programming language for dynamic do-
mains. Journal of Logic Programming 31:92–128

20. Marti-Oliet N, Meseguer J (1991) From Petri Nets to Lin-
ear Logic. Mathematical Structures in Computer Science 1(1):
69–101

21. McCarthy J, Hayes P (1969) Some philosophical problems
from the standpoint of artificial intelligence. In: Meltzer B,
Michie D (eds) Machine Intelligence 4, Edinburgh University
Press, Edinburgh, pp 463–502

22. McIlraith S, Son TC, Zeng H (2001) Semantic Web Services.
IEEE Intelligent Systems, Special Issue on the Semantic Web
16:46–53, March/April

23. Menzel C, Gruninger M (2001) A formal foundation for pro-
cess modeling. In: Welty C, Smith B (eds) Formal Ontology in
Information Systems, ACM Press

24. Nau D (2003) Mapping and merging ontologies. In: Staab
S (ed) Handbook of Ontologies in Information Systems,
Springer-Verlag

25. Object Management Group (2003) OCL 2.0 Specification.
http://www.omg.org/cgi-bin/doc?ptc/03-10-14, March

26. Object Management Group (2003) OMG Unified Modeling
Language Specification, version 1.5, Part 6.
http://www.omg.org/cgi-bin/doc?formal/03-03-01, March

C. Bock, M. Gruninger: PSL: A semantic domain for flow models

27. Object Management Group (2004) UML 2.0 Superstructure
Specificatoin.
http://www.omg.org/cgi-bin/doc?ptc/03-08-02, March

28. Reiter R (2001) Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems, MIT Press

29. Schlenoff C, Knutilla A, Ray S (1997) Requirements for
Modeling Manufacturing Process: A New Perspective. In:
Proceedings of Design Engineering Conferences, Sacremento,
September

30. Unambiguous UML Submission Team (2003) Unambiguous
UML (2U) 3rd Revised Submission to UML 2 Infrastructure
RFP. http://www.omg.org/cgi-bin/doc?ad/2003-01-07

31. Workflow Management Coalition (1999) Workflow Standard –
Interoperability Abstract Specification.
http://www.wfmc.org/standards/docs/TC-1012_Nov_99.pdf,
November

32. Workflow Management Coalition (1999) Interface 1: Pro-
cess Definition Interchange Process Model. Technical Report
WfMC-TC-1016-P.
http://www.wfmc.org/standards/docs.htm

33. Wyner GM, Lee J (2003) Defining Specialization for Process
Models. In: Malone TW, Crowston K, Herman GA (eds) Or-
ganizing Business Knowledge: The MIT Process Handbook,
MIT Press, pp 131–174

Conrad Bock is the work-
group lead for UML 2 activity
and action modeling, and par-
ticipated in UML process model
development in earlier versions
of UML. He has extensive expe-
rience in process modeling over
a range of methodologies, includ-
ing those at SAP and Microsoft.
He is currently a Computer Sci-
entist at the U.S. National Insti-
tute of Standards and Technol-

ogy (NIST) in the Process Specification Language project.

Michael Gruninger is the
project leader for the PSL project
at NIST, and for International
Standards Organization (ISO)
18629 standardizing PSL. His
previous work on process ontolo-
gies included TOVE, a common-
sense model for the enterprise.
Michael is currently a Research
Scientist in the Institute for Sys-
tems Research at the University
of Maryland College Park and

Guest Researcher at NIST.

	PSL:A semantic domain for flow models
	1 Ambiguity, abstraction, and expressiveness
	2 PSL and semantics
	3 Basic PSL concepts
	3.1 Occurrences and activities
	3.2 Subactivities

	4 Ordered processes
	4.1 Complete and partial sequencing
	4.2 Object flow and parameterized activities
	4.3 Decision points and merges
	4.4 Timing constraints

	5 Unordered processes
	5.1 Forks and joins
	5.2 Concurrency

	6 Behavior classification
	7 Closure
	8 Other approaches
	9 Summary
	References

