
1

PSL and Flow Models

Conrad Bock
Michael Gruninger

8/2004

2

Overview
Approaches to system specification
– Model vs instance-based
– Example from structural specification

PSL introduction
– Why PSL is not yet another “L”.
– Basic PSL concepts
– How PSL is used

PSL application
– Behavior Classification

Conclusions

3

Ontology Languages

Terms Thesauri

Formal
Taxonomies

Frames
(OKBC)

Data and Process
Models

(UML, ORM,
EXPRESS)

Description
Logic-based

(DAML+OIL)

Principled,
informal

hierarchies

Ad hoc
Hierarchies

(Yahoo!) Structured
Glossaries

XML DTDs

Data
Dictionaries

(EDI)

‘Ordinary’
Glossaries

XML
Schema

DB
Schema

Glossaries &
Data Dictionaries

Formal Languages &
Automated Reasoning

Thesauri,
Taxonomies

FOL,
OCL,
PSL

4

UML:

OWL:
<owl:Class rdf:ID=“Mammal"/>
<owl:Class rdf:ID=“Dog">

<rdfs:subClassOf rdf:resource="#Mammal"/>

</owl:Class>

Left of Red Line (User view)

Dog Mammal

C++: struct Dog : Mammal { }

English: Dog is a kind of Mammal

(or UML repository)

5

OWL:
<owl:GWJK rdf:ID=“LHGY"/>
<owl: GWJK rdf:ID=“OUYT">

<rdfs:LNCGWJKYO rdf:resource="#LHGY" />

</owl: GWJK>

UML:

C++: eghc OUYT : LHGY {}

English: OUYT er a bfvc yo LHGY

Left of Red Line (Machine view)

OUYT LHGY (same for repository)

6

Specialized Interpreters
Interpreters built for each LORLL ...
… by humans who “know” the meanings.
“Consensus” achieved by:
– Documentation, runtime examples, model

theories, RORLL’s.
LORLL’s are fundamentally:
– Not self-documenting.
– Don’t say what they mean.

Result: Interoperability problems.

7

Right of Red Line
FOL:
(forall (?x)

(implies (Dog ?x)
(Mammal ?x)))

Self documenting because it refers to
instances of domain concepts (?x).

Still need interpreter for “forall”, etc.

Small set of highly reusable and composable
constructs.

8

Right of Red Line
Simple things can be hard to say:

Person Petown

0..*1

owned_by

(forall (?x)
(implies (Pet ?x)

(exists (?y)
(and (Person ?y)

(own ?y ?x)
(forall (?z)

(implies (own ?z ?x)
(= ?z ?y))))))))

9

Right of Red Line
And some things impossible:

Person Petown

0..*1

owned_by

Each one
expanding
to increasingly
complicated
expression

Each person owns:
0 pets, or

or 1 pet,
or 2 pets
or 3 pets . .

10

Left/Right Comparison
No silver bullet
Left of Red Line (modeling):
– Usually more concise.
– Easier to add concepts.

• Except for updating tools.
– Difficult to interpret correctly.

Right of Red Line (instance-based):
– Self-documenting.
– Sometimes very difficult to add concepts.

• Once done, tools understand the new concepts.
– Usually more verbose.

11

UML 2:

Flow models: LORLL

DryPaint

ChangeColor

BPEL:
<process name=“ChangeColor”>

<sequence>
<invoke operation=“Paint”></invoke>
<invoke operation=“Dry”></invoke>

</sequence>
</process>

C: void ChangeColor
{ Paint();

Dry();
}

(or UML
repository)

12

Specialized Interpreters
Interpretation is needed to know:
– Can any other activities occur between

Paint and Dry?
– What behaviors can occur concurrently

with painting?
– How soon after painting must drying

occur?
– Is it possible under exceptional

conditions for drying not to happen?

13

PSL: RORLL (instance-based)
Instances of processes
– Individual executing processes.
– ChangeColor executed at 10:21am ET

9/1/2003 at factory 1.
Execution sequence
– Sequences of executing steps in the

process, perhaps some concurrently.
– Paint executed at 10:22am, then Dry at

10:40am, etc.
Small set of highly reusable constructs.

14

Basic PSL Concepts

Occurrence is an execution of an Activity
– like Paint executed at 10:22am ET 9/1/2003 at

factory 1.

Occurrence Activity
occurrence_of

1
*

Activity is a RORL-like
– like Paint or Dry.

15

Basic PSL Concepts

In FOL:
(forall (?a ?occ)

(implies (occurrence_of ?occ ?a)
(and (activity ?a) (activity_occurrence ?occ))))

(forall (?occ)
(implies (activity_occurrence ?occ)

(exists (?a)
(and (activity ?a) (occurrence_of ?occ ?a)))))

(forall (?occ ?a1 ?a2)
(implies (and (occurrence_of ?occ ?a1)

(occurrence_of ?occ ?a2))
(equal ?a1 ?a2))))

PSL is an execution-based way of describing
processes.
PSL happens to be expressed in FOL, but it
is not bound to FOL.

ActivityOccurrence 1occurrence_of 1*

16

0..1
*

successor

Basic PSL Concepts

Executions happen one after another.

ActivityOccurrence 1occurrence_of 1*

Covers all activities happening anywhere.

Occurrence has multiple successors, one for
each (theoretically) possible next occurrence.

17

Occurrence Tree

Tree of all possible execution sequences,
including those that
– are not physically possible.
– are not specified by the user.

Not stored anywhere, just referred to.

Paint

Paint

Dry

DryPaint

Dry

Occurrence

successorActivity

18

Process Specification in PSL
Constraints on the occurrence tree.
Example: drying immediately follows all
painting.

Satisfies constraint

Does not
Satisfy
constraint

Paint

Paint

Dry

DryPaint

Dry

Move

19

Process Specification in PSL
Constrain occurrences of Paint to be
followed by occurrences of Dry:

(forall (?occPaint)
(implies

(and (occurrence_of ?occPaint Paint)
(legal ?occPaint))

(and (legal (successor Dry ?occPaint))
(forall (?otherSuccessor)

(implies
(not (equal ?otherSuccessor

(successor Dry ?occPaint)))
(not (legal ?otherSuccessor)))))))

20

Process Specification in PSL

Above says that Dry happens after Paint
under executions of ChangeColor.

Other processes may use Paint without Dry.

DryPaint

ChangeColor

21

Complex Processes in PSL

Paint happens immediately after Dry
under executions of ChangeColor.

Paint

DrillPaint

Dry

OtherProcess

ChangeColor

ChangeColor specification does not
constrain OtherProcess above

22

Complex Processes in PSL
Complex occurrences and activities composed of
primitive ones:

Occurrence Activity
occurrence_of 1*

*
0..1

successor

* subactivity_occurrence

*
ComplexOccurrence

PrimitiveOccurrence

*

subactivity

PrimitiveActivity

ComplexActivity
*

Successor moved down to PrimitiveOccurrence.
Occurrence tree covers every step at finest grain.

23

Complex Processes in PSL
Execution sequencing within complex
activity:

min_precedes defined in terms of successor.
next_subocc in terms of min_precedes:
(forall (?s1 ?s2 ?s3)

(iff (next_subocc ?s1 ?s2 ?a)
(and (min_precedes ?s1 ?s2 ?a)

(not (exists (?s3)
(and (min_precedes ?s1 ?s3 ?a)

(min_precedes ?s3 ?s2 ?a))))))

*
*

*

min_precedes

*
PrimitiveOccurrence

0..1
*

0..1

next_subocc

*

Executions
immediately
following (under
a complex
occurrence)

Executions following
sometime (under a
complex occurrence),
not necessarily
immediately.

24

Complex Processes in PSL
Constrain occurrences of ChangeColor to be
composed of sequential occurrences of Paint
and Dry:

(forall (?occChangeColor)
(implies

(occurrence_of ?occChangeColor ChangeColor)
(exists (?occPaint ?occDry)

(and (occurrence_of ?occPaint Paint)
(occurrence_of ?occDry Dry)
(subactivity_occurrence ?occPaint ?occChangeColor)
(subactivity_occurrence ?occDry ?occChangeColor)
(next_subocc ?occPaint ?occDry

ChangeColor)))))

25

Process Specification in PSL
Simple things can be hard to say:

CleanUp

Dry

PutAway

6 nonoverlapping orderings
6 partially overlapping orderings
1 complete overlapping order

26

Process Specification in PSL
Benefits:
– Self-documenting (says what it means).
– Small set of highly reusable concepts.
– Improved interoperability by reducing

ambiguity.
Disadvantages
– Sometimes difficult to add concepts.
– More verbose in many cases.

Additional benefit to process modeling:
– More flexible constraints (classification,

rules).

27

Advertise the Distinction
Common to think of PSL as yet
another “L” (UML, BPEL, etc).
PSL is a semantic foundation for all
LORR flow/process models.
Even KBSI substitutes flow models
for PSL (PDS).
More expressive and less ambiguous
than flow models.

28

How to Get Best of Both Worlds?
Research topic
Translate models to instance-based
– Not enough: Users ignore instance-based

Instance-based aid to example testing
– Check examples (user-defined or actual)

against instance-based semantics.
– Generate examples from instance-based

specs to be checked by users or system.
Annotate modeling languages with
instance-semantics.

29

Behavior Classification

Classification of process executions:
(forall (?occFFS)

(implies (occurrence_of ?occFFS FastFoodService)
(exists (?occFS)

(and (occurrence_of ?occFS ?FoodService)
(forall (?s)
(implies

(subactivity_occurrence ?s ?occFFS)
(subactivity_occurrence ?s ?occFS))))))

FoodService

RestaurantServiceFastFoodService Buffet ChurchSupper

30

Behavior Classification

How to abstract commonality?

Prepare

Pay

Order

Serve

Eat

Order

Serve

Prepare

Eat

Pay

Pay

Prepare

Order

Serve

Eat

Prepare

Serve

Order

Pay

Eat

FoodService

RestaurantServiceFastFoodService Buffet ChurchSupper

31

Behavior Classification
Food Service has these steps:
– Order, Prepare, Serve, Eat, Pay

With these constraints:
– Order, Prepare, and Serve always

happen before Eat.
– Serve happens after Prepare and Order.
– Pay can happen anytime in the process.

Need to partially specify a process as
incrementally-defined constraints.

32

Behavior Classification
Flow models are not expressive enough:

FoodService
Prepare

Pay

Order

Serve Eat

Prepare and Order are not concurrent.
Pay is not concurrent with other steps.

33

Behavior Classification

Prepare sometime before Eat under FoodService:

PrimitiveOccurrence *
*

*

min_precedes

*
0..1

*
0..1

next_subocc

*

Executions
immediately
following (under
a complex
occurrence)

Executions following
sometime (under a
complex occurrence),
not necessarily
immediately.

(forall (?occFoodService)
(implies

(occurrence_of ?occFoodService FoodService)
(exists (?occPrepare ?occEat)

(and
(occurrence_of ?occPrepare Prepare)
(occurrence_of ?occEat Eat)
(subactivity_occurrence ?occPrepare ?occFoodService)
(subactivity_occurrence ?occServe ?occFoodService)
(min_precedes ?occPrepare ?occEat

FoodService)))))

34

Behavior Classification

Possible enhancement to UML notation.

min_precedes
semantics

Serve

Order

Prepare

Eat

Pay

FoodService

35

Behavior Classification

FastFoodService: Prepare sometime before Order

Serve

Order

Prepare

Eat

Pay

FoodService

(forall (?occFastFoodService)
(implies

(occurrence_of ?occFastFoodService FastFoodService)
(exists (?occPrepare ?occOrder)

(and
(occurrence_of ?occPrepare Prepare)
(occurrence_of ?occOrder Order)
(subactivity_occurrence ?occPrepare ?occFoodService)
(subactivity_occurrence ?occOrder ?occFoodService)
(min_precedes ?occPrepare ?occOrder

FoodService)))))

FoodService

RestaurantServiceFastFoodService Buffet ChurchSupper

36

Behavior Classification

Execution traces classified by
process specifications (constraints).

Order

Prepare

Serve

Pay

Serve

Eat

Order

Pay

Eat Eat

Pay
Order

Serve

Satisfies constraints
of FoodService
and FastFoodService

Does not satisfy
constraints
of FoodService

Satisfies constraints
of FoodService only

37

Behavior Classification

Possible enhancement to UML notation.
Requires updating tools and services.

min_precedes
semantics

Serve

Order

Prepare

Eat

Pay

FoodService

38

Abstraction vs Ambiguity
Both omit information.
One does it intentionally and explicitly,
the other doesn’t.
Example:
– Did the modeler intend that no other step

occur between Paint and Dry?
– Design intent is lost.

A proper abstraction would say what
the modeler actually meant.
PSL does this with the occurrence tree.

39

PSL Myths
Too precise
– Can write “partial programs”
– Can make useful distinctions

• Weak and strong ordering
• Weak and strong concurrency
• Activity viewpoints
• Occurrence, activity, activity class

– Distinctions provide power
Can’t say everything
– Some things too complicated

40

More Information
See paper “PSL: A Semantic Domain
for Flow Models”.
More applications of PSL to flow
modeling.
Parameterized activities.
Inputs and outputs, see NISTIR.
Concurrency and external activities.
Decision points/merges.
Closure.

	PSL and Flow Models
	Overview
	Ontology Languages
	Left of Red Line (User view)
	Left of Red Line (Machine view)
	Specialized Interpreters
	Right of Red Line
	Right of Red Line
	Right of Red Line
	Left/Right Comparison
	Flow models: LORLL
	Specialized Interpreters
	PSL: RORLL (instance-based)
	Basic PSL Concepts
	Basic PSL Concepts
	Basic PSL Concepts
	Occurrence Tree
	Process Specification in PSL
	Process Specification in PSL
	Process Specification in PSL
	Complex Processes in PSL
	Complex Processes in PSL
	Complex Processes in PSL
	Complex Processes in PSL
	Process Specification in PSL
	Process Specification in PSL
	Advertise the Distinction
	How to Get Best of Both Worlds?
	Behavior Classification
	Behavior Classification
	Behavior Classification
	Behavior Classification
	Behavior Classification
	Behavior Classification
	Behavior Classification
	Behavior Classification
	Behavior Classification
	Abstraction vs Ambiguity
	PSL Myths
	More Information

