Enhancing Business Processes Using Semantic Reasoning

Monica. J. Martin Sun Java Web Services

26 May 2005

www.sun.com

HSIS

Presentation Outline

- Industry landscape
- Standards landscape
- Needs for and use of semantic reasoning
- Forward progress and examples
- Opportunities

Industry Landscape [1 of 3]

Business Processes and BPM

'Classic' BPM: Assessment, analysis, modeling, definition and subsequent operational implementation of the core business processes of an organization (or other business entity)

- Multiple terms / levels of understanding
 - Classic workflow (human interaction)
 - Automated processes
 - Visualize, abstract, and execute/monitor
 - Models: Notations, semantics, constraints...
 - Conceptualize
 - Describe or declare

Industry Landscape [2 of 3]

- Where do processes fit?
 - With applications (now discrete or composed services)
 - Within an entity or domain of control
 - Across entities or domains of control
- (very) Basic common terminology
 - Orchestration: Running processes under centralized control or from one view
 - Choreography: Message exchange sequence
 - Collaboration: Partner interactions across domains of control (may include choreography)

Industry Landscape [3 of 3]

Business Collaboration

Business obligation to respond in 2 days Provide non-repudiation Business signal required

Orchestration

Loan approver requests a credit check. If error in processing, fault occurs. The loan approver process instance correlates its request a subsequent credit check process.

Choreography

Loan approver requests either a credit check or assessment. Passive observation or active control that may recognizes sequence of messages of executable process views.

Standards Landscape (1 of 4)

- BPM-related standards / specifications 'in play' include:
 - JSR 208 Java[™] Business Integration
 - WS-Business Process Execution Language (WS-BPEL)
 - ebXML Business Process Specification Schema (BPSS)
 - WS-Choreography Description Language (WS-CDL)
 - Business Process Management Language (BPML)
 - Business Process Modeling Notation (BPMN)
 - BP Definition Metamodel (BPDM)
 - Unified Modeling Language™
 - UN/CEFACT Modeling Methodology (UMM), and
 - PSL, CL, EPC, XPDL, XLANG, WSFL, WSCL, WSCI...

Standards Landscape (2 of 4)

Orchestration

...<invoke partnerLink="customer"
portType="sns:shippingServiceCustomerPT"
operation="shippingNotice"
inputVariable="shipNotice">
<correlations>
<correlations>
<correlation set="shipOrder" pattern="out"/>
</correlations>
</invoke>
</sequence>

</case>...

Choreography

...<interaction name="Shipper sends delivery details to buyer"
operation="deliveryDetails" channelVariable="DeliveryDetailsC">
<description type="description">Pass back shipping details to the
buyer</description>
<participate relationshipType="ShipperBuyer"
fromRole="ShipperRoleType" toRole="BuyerRoleType" />
<exchange name="sendDeliveryDetails"
informationType="DeliveryDetailsType" action="request">
</exchange ame="sendDeliveryDetailsType" action="request">
</exchange>
</interaction>
</sequence>
</choreography>
</package>

Standards Landscape (3 of 4)

</ComplexBusinessTransactionActivity

Standards Landscape (4 of 4)

- Focus evolving to: Mathematical logic
 - Association
 - Simulation
 - Metamodels
 - State machines
 - Petri nets
 - Service models
 - more...
- Building blocks

Mendling et al.: A Comparison of XML Interchange Formats for BPM, 2004

	BPDM	BPEL4WS	BPML	BPMN	BPSS	EPML	OWL-S	PNML	UNIL Act D.	WS-CDL	WSCI	WSCL	WSFL	XLANG	XPDL
Task I/O	?	÷.		+	÷		Ŧ			(4 2)	4	Ŧ	÷	÷.	
Task Address	?	Γŧ.					[+]	2 - 6 2 - 7 - 7 2 - 7 - 7		1 1 1 1 1 1 1	Ŧ	+	1 44		+
Ouality Attributes	?	(1 .)		a s ai	+		H.	2.333 2.333			9999 9999	07509	÷.		
Protocol	?			t	(1680) (1680)	33.2	$\hat{\mathbf{H}}_{2}$	8 3 86	1973	÷.	t	÷.	÷	S.	
Control Flow	?		t.	$\frac{1}{2}$	÷		$\frac{2}{2}$		÷			140	÷		+
Data Handling	?	÷	(\pm)	+					+	(\pm)			÷		+
Instance Identity	3	Ŧ	ŧ							4	+		÷	Ŧ	
Roles	?	+	Ŧ	+	+		H.	(e)	+	4	\mathbf{F}		Ŧ		+
Events	?	+	÷		nan si Sang	Ŧ		 1. .		~~ 17			+	+	+
Exceptions	?	Ŧ	Ŧ	Ŧ	+			2.50)	\pm	ΎΨ.	Ŧ	0723	÷.		$^+$
Transactions	?				÷	32	æ	3	() 2			-83	33	1	32
Graphic Position	3		(9) (9)	+		÷		+	+	<u>1</u>				90 () 	
Statistical Data	?		764	1		E [20		21	9	40	50	ΪX.		Ŧ

Semantic Reasoning Building Blocks

- Where does semantic reasoning fit in a pragmatic world? (short list)
 - Expression reasoning
 - Metadata for design and usage
 - Conditions and constraints, policy, context
 - Domain vocabularies that support content
 - Process matching and compatibility
- Why pragmatism (iterative progress)?
 Emphasis on saving costs, productivity and business justification to change

Semantic Reasoning Building Blocks Quote: OWL-S

..."To make use of a Web service, a software agent needs a computerinterpretable description of the service, and the means by which it is accessed. An important goal for Semantic Web markup languages, then, is to establish a framework within which these descriptions are made and shared. Web sites should be able to employ a <u>standard ontology</u>, consisting of a set of basic classes and properties, for declaring and describing services, and the ontology structuring mechanisms of OWL provide an appropriate, Web-compatible representation language framework within which to do this..."

http://www.daml.org/services/owl-s/1.1/overview/

Building Towards 'Certainty'

- Evidence of ongoing progress (short list)
 - Semantic variables
 - Conformance typing and mathematical mapping
 - Domain content and process reasoning
 - For semantic understanding and assembly of content
 - For reasoning on content and processes
- Goal: Flexibility and business agility
 - Example: 'Adaptive trading networks' where partners respond quickly to global demands
 - Forrester Research, 21 April 2005
 - Provides basis for use of ontological approaches

Reasoning Example [1 of 5]

- Semantic variables: Elements used to bind semantics to other objects
 - Condition expressions
 - Triggers, events
 - Content characteristics
 - Activities themselves

Simplistic example:

<Variable name="PO Accepted" nameID="H7YIUSOP" businessTransactionActivityRef="ID122A39C23" businessDocumentRef="ID1012">

<ConditionExpression expressionLanguage="XPath1" expression="//POAck[@status='Reject']"/>

</Variable>

Reasoning Example [2 of 5]

- Conformance typing system
 - π (pi-) calculus based: Session and causality types proposed to prevent deadlock
 - Branching and, on match, selection of clientserver of request-response
 - Static/ dynamic checking

Use case 2

$$P_1 = \overline{c} \operatorname{dok}$$
; C request 2(\widetilde{x}_2); Q2
Server
reserve > Q (= if ok then)
abort > 0

Client

Client (a) = $\overline{a}(c)C(y)$, $\overline{y} \circ \text{request}(\widetilde{v}); Q_c$

Reasoning Example [3 of 5]

- Formal choreography
 - Based on roles and interactions
 - Describes conversations in π
 - Defines CL_P (semantic auxiliary language)
 - Maps conversations to semantics

 $C_P ::= \mathbf{0} \mid m \mid C_P; C_P \mid C_P \mid C_P \mid C_P + C_P$ $m ::= (\rho_A, \rho_B, o, \widetilde{x}, \widetilde{y}, dir)$

 $\begin{array}{l} \text{(Interaction)} \\ (\rho_A, \rho_B, o, \overline{x}, \overline{y}, dir) \rightarrow \mathbf{0} \end{array}$

 $\frac{ \begin{pmatrix} \text{(Sequence)} \\ C_P \to C'_P \\ \hline C_P; D_P \to C'_P; D_P \end{pmatrix} }{ \begin{pmatrix} C_P; D_P \end{pmatrix} }$

$$\frac{(\text{PARALLEL})}{C_P \to C'_P}$$

$$\frac{C_P \to C'_P}{C_P \mid D_P \to C'_P \mid D_P}$$

$$\frac{\stackrel{(\text{Ceoucle})}{C_P \rightarrow C'_P}}{C_P + D_P \rightarrow C'_P}$$

(STRUCTURAL CONGRUENCE) $\mathbf{0}; C_P \equiv C \qquad C_P \mid \mathbf{0} \equiv C_P \qquad C_P + \mathbf{0} = C_P$ $C_P + D_P \equiv D_P + C_P \qquad C_P \mid D_P \equiv D_P \mid C_P$ $(C_P + D_P) + E_P \equiv C_P + (D_P + E_P)$ $(C_P \mid D_P) \mid E_P \equiv C_P \mid (D_P \mid E_P)$

Link: http://www.cs.unibo.it/~lucchi/pubbl.html

Reasoning Example [4 of 5]

- Semantic reasoning and services – OWL-S, SWRL, WSMO
 - WSDL, UDDI, SOAP, WS-BPEL, etc.
- Emerging mechanisms
 - Metadata and semantic models
 - Similarity measures (moving to semantic reasoning)
 - Abstract service descriptions
 - Process effects: pre- and post-conditions, triggers, etc.
 - Mathematical logic and computation

Reasoning Example [5 of 5]

- Process matching
 - Equivalency between activities within a process
 - Structure
 - Content
 - Intent
 - Recognize parallelism occur in processes
 - Combine set theory,
 bi-simulation, state
 transitions

Summary and Future Opportunities

- Leverage today
 - Evidence of building blocks
 - BPM momentum
 - Process complexity (as an asset)
- Exploit tomorrow
 - Identify opportunities to use semantic reasoning to solve operational problems
 - Take iterative steps to build, leverage and use ontological approaches to enable BPM

Some Relevant Links

- A Comparison of XML Interchange Formats, Jan Mendling et al, August 2004, http://wi.wu-wien.ac.at/~mendling/publications/04-EMISA.pdf
- Process Modelling and Standardization, Jan Mendling, http://www.erpanet.org/events/2004/budapest/presentations/JanMendlingErpanet2004.pdf
- Conformance Type System use cases, related to W3C work, Nobuko Yoshida, July 2004, http://lists.w3.org/Archives/Public/public-ws-chor/2004Jul/0071.html
- OWL-S Overview, http://www.daml.org/services/owl-s/1.1/overview/
- Towards a formal framework for Choreography, N. Busi et al, http://www.cs.unibo.it/~lucchi/pubbl.html
- Process matching, http://www.idealliance.org/papers/xmle03/ebxmlslides/folmer/folmer.pdf and http://www.openxchange.org/
- OWL-S' Relationship to Selected Other Technologies, Nov 2004 W3C, http://www.w3.org/Submission/2004/SUBM-OWL-S-related-20041122/#bpel
- NIST Test Bed Activity Update, Serm Kulvatunyou et al, http://www.openapplications.org/downloads/meetings/20050503-gaithersburg/Weds/2005-05-04-OAGMeetingNISTB2BTestbedActivitiesUpdate.pdf
- JSR-208: Java™ Business Integration, http://www.jcp.org/en/jsr/detail?id=208
- WS-BPEL, OASIS, draft, May 2005, http://www.oasis-open.org/committees/document.php?document_id=12791&wg_abbrev=wsbpel
- BPMN, BPMI, 2004: http://www.bpmn.org; BPML, BPMI, http://www.bpmi.org
- OASIS ebBP, April 2005 core: http://www.oasis-open.org/committees/document.php?document_id=12259&wg_abbrev=ebxml-bp
 Note: Signal, supplements and artifacts packages available on site.
- W3C WS-Choreography, WS-CDL, December 2004, http://lists.w3.org/Archives/Public/public-ws-chor/2004Dec/0042.html
- BPDM, Object Management Group, http://www.omg.org/cgi-bin/doc?bei/2003-1-6 (RFP)
- UN/CEFACT Modeling Methodology, N090/R10, http://www.ifs.univie.ac.at/untmg/
 - 19 26 May 2005 Ontolog Forum

Enhancing Business Processes Using Semantic Reasoning

Monica J. Martin monica.martin@sun.com

www.sun.com

HASIS