

KB_Bio_101: Conceptual Modeling Challenges in Creating a Biology Knowledge Base

Vinay K. Chaudhri

This work is owned by Vulcan Inc. and is licensed for use under the Creative Commons Attribution-NonCommerical-ShareAlike 3.0 license (<u>http://creativecommons.org/licenses/by-nc-sa/3.0/</u>). Vulcan Inc., June 2013

Acknowledgment

- This work is funded by Vulcan Inc.
 - See <u>http://www.vulcan.com</u> and <u>www.projecthalo.com</u>
- AURA/Inquire Development Team
 - Eva Banik, Peter Clark, Roger Corman, Nikhil Dinesh, Debbie Frazier, Stijn Heymans, Sue Hinojoza, David Margolies, Adam Overholtzer, Aaron Spaulding, Ethan Stone, William Webb, Michael Wessel and Neil Yorke-Smith
 - Ashutosh Pande, Naveen Sharma, Rahul Katragadda, Umangi Oza

Outline

- Project Overview
- KB_Bio_101
 - Representing structure and function
 - Representation and Reasoning needs
 - Upper ontology
 - Representing structure
 - Representing function
 - Representing structure function relationship
 - Answering questions
- Some open research problems
- Summary

Project Overview

- Inquire Video
 - http://www.aaaivideos.org/2012/inquire_intelligent_textbook/

Project Overview

AURA A knowledge authoring environment for domain experts

Inquire Electronic book for biology students

System architecture

Significant effort devoted to the usability of answers by students

Knowledge Authoring in AURA

- Knowledge engineers provide a small library of domain independent representations
 - The Component Library (CLIB) contains classes representing physical actions, e.g., Move, Attach, Penetrate, and semantic relations, e.g., agent, object, has-part (Barker, Clark, Porter, KCAP'01)
 - See <u>http://www.ai.sri.com/pub_list/864</u>
- Biologists apply those representations to encode biology knowledge
 - AURA provides graphical editing
 - See <u>http://www.ai.sri.com/pub_list/1545</u> and <u>http://www.ai.sri.com/pub_list/865</u>

Outline

- Project Overview
- KB_Bio_101
 - Representing structure and function
 - Representation and Reasoning needs
 - Upper ontology and the KR language
 - Representing structure
 - Representing function
 - Representing structure function relationship
 - Answering questions
- Some open research problems
- Summary

KB_Bio_101

- Campbell Biology is a textbook used in an advanced placement biology course in schools and introductory biology courses in colleges
- A team of biologists used AURA to curate the KB from the textbook, using a sophisticated knowledge authoring process
- The KB is a valuable asset: it was created by an estimated 12 person years of encoding effort by biologists, and an estimated 5 person years of work on the upper ontology (CLib)
- Vulcan has released this asset free of charge for research purposes <u>http://www.ai.sri.com/halo/halobook2010/exported-kb/biokb.html</u>

- Classes
 - Necessary and sufficient conditions
 - **Disjoint-ness**
 - Multiple Inheritance
- **Relations and Property Values**
 - domain, range
 - inverse relations
 - transitivity
 - Relation hierarchy
 - Relation composition
 - qualified number restrictions
 - Nominals

 $\forall x : Cell(x)$ $\rightarrow \exists y_1, y_2$: LivingEntity(x) \land hasPart(x, y_1) \wedge hasPart(x, y₂) \wedge Ribosome(y₁) \wedge Chromosome(y₂)

Cell \sqsubseteq Living-Entity \sqcap (∃hasPart.Ribosome) ⊓

(*∃hasPart.Chromosome*)

AURA

- Unique Features
 - Graph structured descriptions

Every Eukaryotic Cell is a Cell and has parts Eukaryotic Chromosome, Nucleus and a Ribosome such that Eukaryotic Chromosome is inside the Nucleus

 $\begin{array}{l} \forall \ x : EukaryoticCell(x) \rightarrow \\ \exists \ y_1, y_2, y_3 : Cell(x) \land \\ hasPart(x, y_1) \land hasPart(x, y_2) \land hasPart(x, y_3) \land \\ isInside(y_2, y_3) \land \ Ribosome(y_1) \land EukaryoticChromosome(y_2) \land \\ Nucleus(y_3) \end{array}$

The knowledge shown in red is not expressible in known decidable description logics such as OWL 2 This can be captured in Rule Languages

- Unique Features
 - Inherit and Specialize
 - In the Eukaryotic Cell

Ribosome was inherited from Cell

Chromosome was inherited from Cell and specialized to Eukaryotic Chromosome

- Unique Features
 - Inherit and Specialize

In the Eukaryotic Cell

Ribosome was inherited from Cell

Chromosome was inherited from Cell and specialized to Eukaryotic Chromosome

$$\begin{aligned} hasPart(x, f_{Cell} \# 1(x)) &\land hasPart(x, f_{Cell} \# 2(x)) \\ &\land Ribosome(f_{Cell} \# 1(x)) \\ &\land Chromosome(f_{Cell} \# 2(x)) \end{aligned} \forall x : ECell(x) \rightarrow \\ hasPart(x, f_{ECell} \# 1(x)) \land hasPart(x, f_{ECell} \# 2(x)) \\ &hasPart(x, f_{ECell} \# 3(x)) \land isInside(f_{ECell} \# 2(x), f_{ECell} \# 3(x)) \\ &\land Ribosome(f_{ECell} \# 1(x)) \land Chromosome(f_{ECell} \# 2(x)) \\ &\land Nucleus(f_{ECell} \# 3(x)) \end{aligned}$$

- Unique Features
 - Inherit and Specialize

In the Eukaryotic Cell

Ribosome was inherited from Cell

Chromosome was inherited from Cell and specialized to Eukaryotic Chromosome

 $(f_{Cell}#1(x)) = (f_{ECell}#1(x))$ $(f_{Cell}#2(x)) = (f_{ECell}#2(x))$

14

- Computational properties
 - Reasoning with KR in KB_Bio_101 is, in general, un-decidable
 - There are, however, some decidable fragments that introduce guardedness and acyclic structure in the KB
 - Object Oriented Knowledge Bases in Logic Programming (Chaudhri, et. al., Technical Communication of the International Conference on Logic Programming, 2013)
 - Available at: <u>http://www.ai.sri.com/pub_list/1958</u>
 - A more thorough formal investigation is an open problem
 - Challenge for TPTP reasoners: <u>http://www.ai.sri.com/pub_list/1937</u>
 - Challenge for OWL reasoners: <u>http://www.ai.sri.com/pub_list/1961</u>

Knowledge Factory Process

- Goals
 - Avoid gaps in encoding
 - Ensure consensus
 - Catalogue conceptual modeling challenges

KB_Bio_101 Statistics

Regarding Class Axioms:

# Classes	# Relations	# Cor	stants	Avg. # Skolems Class	1	Avg. # Atom / Necessary Condition	s Avg. # A / Sufficie Conditio	ent
6430	455	634		24		64	4	
# Constant Typings	# Taxonom Axioms			# Disjointness # Equ Axioms Asser		· · · · · · · · · · · · · · · · · · ·	# Qualified Number Restrictions	S
714	6993	18616			1087	755	936	

Regarding Relation Axioms:

# DRAs	# RRAs	# RHAs	# QRHAs	# IRAs	# 12NAs / # N21As	# TRANS + # GTRANS
449	447	13	39	212	10 / 132	431

Regarding Other Aspects:

# Cyclical	# Cycles	Avg. Cycle	# Skolem
Classes		Length	Functions
1008	8604	41	73815

Core Themes in Biology

	Challenge
Structure and Function	Relating structure and function
Regulation	Qualitative reasoning about dynamic processes
Energy Transfer	Representing energy production, consumption
Continuity and Change	Representing genetic change across generations
Evolution	Models of population dynamics
Science as a Process	Experimentation and hypothesis testing
Interdependence in Nature	Represent large inter-related complex systems
Science, Technology, Society	Represent technological and social forces

Outline

- Project Overview
- KB_Bio_101
 - Representing structure and function
 - Representation and Reasoning needs
 - Upper ontology
 - Representing structure
 - Representing function
 - Representing structure function relationship
 - Answering questions
- Some open research problems
- Summary

Core Theme: Structure & Function

Structure and function are correlated at all levels of biological organization: *The form fits the function*

(b) Wing bones have a honeycombed internal structure that is strong but lightweight.

FIGURES FROM BIOLOGY (9TH EDITION) BY NEIL A. CAMPBELL AND JANE B. REECE. COPYRIGHT © 2011 BY PEARSON EDUCATION, INC. USED BY PERMISSION OF PEARSON EDUCATION, INC.

Computational Meaning of a Core Theme AURA

- Identify the requirements in terms of a set of questions
 - Diagnostic questions
 - Help assess the basics of KR&R
 - Educationally useful questions
 - The question must be of interest to teachers and students
 - The question must be ``Google hard"
 - The question should not require solving an open-ended research problem

Diagnostic S&F Questions

- What is the structure of X?
- What is the function of X?

Educationally Useful Questions

- Relate Structures to Functions
 - What structure of Biomembrane facilitates a function of biomembrane, namely phagocytosis?
- Qualitative Comparisons
 - If the Loop of Henle gets longer, how will its function be impacted?
- Detailed Comparisons
 - What is the functional similarity between prions and viroids?
- Similarity Reasoning
 - Glucose is to Glycogen as ATP is to what?
- Negatively Modified Structures Impacting Functions
 - If hydrogen is removed from a saturated fatty acid, then how is its function impacted?

Starting Point - Component Library

 A simple upper ontology designed to be accessible to domain experts (Barker et. al, KCAP 2001)

See http://www.ai.sri.com/halo/public/clib/20130328/clib-tree.html for more information

AURA

Component Library

A vocabulary of relations to describe events

Event to Entity	Event to Event	Event to Value
agent	first-subevent	direction
object	next-event	distance
instrument	causes	duration
raw-material	enables	frequency
result	prevents	intensity
site	inhibits	rate
origin	by-means-of	

Representing Structure

Structure of an entity represents its parts, their spatial arrangements and sizes

Meronymic	Spatial	Properties
has-part	is-at	length
has-region	is-inside	diameter
material	is-outside	height
possesses	abuts	area
element	is-between	depth
	is-along	volume

Choosing Structural Slots

- Inspired by work of Maria Keet, but simplified for use by biologists:
 - It must make sense to say ``X has Y" in English
 - X has-region Y if
 - Y is a region of space defined in relation to X
 - It does not make sense to associate Y with properties such as mass or density, but can be associated with measures such as length, area, or volume
 - X has material Y only if
 - Y is tangible and pervasive in X
 - X has element Y if
 - X is a set of entities of the same type (or sibling types) that Y is an instance of
 - X possesses Y only if
 - Y is Energy, bond or gradient
 - Otherwise X has part Y

Example Structure Representation

A difficult example: Carbon Skeleton

What should be the relationship between an organic molecule and a skeleton?

It is more than simply a set of entities -Can have length and shape Is not an entity in its own right - Biologists do not associate mass with it The remaining choice is has-region -behaves differently than a human skeleton

Representing Functions

Is function a primitive or a computed notion?

 Could function be inferred from participant relations, thus, reducing the encoding time?

Representing Functions

Is function a primitive or a computed notion?

It is a primitive notion and should be encoded by a biologist

Representing Functions

- What is a function?
 - We understand functions as "special" events in which an entity participates
 - Alternatively, a function is an event which is a reason for an entity's existence
 - The "special" nature of functions will be indicated by using a new slot called has-function

- Types of functions
 - Inherent functions of an entity
 - These will appear on the entity's concept graph
 - Contextual functions of an entity
 - These will appear on *another* entity or event's concept graph

Example of an Inherent Function

- An inherent function of a Golgi Apparatus is to store chemicals
 - This is true regardless of which specific type of cell it is a part of
 - Inherent functions are placed on the Entity graph, using the has-function slot

Example of Function in an Environment

- Not every smooth ER detoxifies drugs
- However, drug detoxification is the function of a smooth ER in a liver cell

AURA

Structure Function Relationship

We know how an entity participates in a function

Structure Function Relationship

 We do not know how an entity participates in a function

For example, Chlorophyll-A contains Poryphrin. The textbook says that Poryphrin facilitates Chlorophyll-A's function of absorbing violet-blue light, but does not say how.

Structure Function Relationship

 We do not know how an entity participates in a function

Answering Questions

- Create an ABOX
 - Instantiate every concept in the knowledge base and compute the individuals it is related to up to depth three
- Conjunctive query answering
 - Reduce questions to conjunctive queries on an ABOX
- Path finding
 - Find all possible paths between two individuals
- Comparisons
 - Computer intersection and difference between two sets of triples

what is the structure of a biomembrane?

Biomembrane is a type of: membrane.

Structure of a biomembrane

Encloses

carbon skeleton

Is between

aqueous solution

aqueous solution

Has region

surface

inside face

outside face v

An outside face is inside an aqueous solution

Possesses

membrane potential

Has part

membrane protein

phospholipid bilayer

glycoprotein *

A glycoprotein is inside a phospholipid bilayer

glycolipid

saturated fatty acid

what are the functions of a biomembrane?

Inquire found this answer to your question about biomembrane:

Functions of a biomembrane

- A chemical is moved through a biomembrane
- A chemical is blocked by a biomembrane

Some functions of different types of biomembranes

- Plasma membrane 4 FUNCTIONS
- Outer membrane 1 FUNCTION

what are the functions of a biomembrane?

Inquire found this answer to your question about biomembrane:

Functions of a biomembrane

- A chemical is moved through a biomembrane
- A chemical is blocked by a biomembrane

Some functions of different types of biomembranes

- Plasma membrane HIDE
 - Transport of an organic molecule in a cell to an extracellular side with a transport vesicle from cytoplasm through a plasma membrane using another organic molecule. This process requires chemical energy and free-energy.
 - A cell is recognized by another cell at a plasma membrane
 - In receptor mediated endocytosis, directed motion a chemical is moved in a plasma membrane through a coated pit, a cytoplasmic side, an extracellular side, a hydrophobic core and an intermembrane space
 - In coated pit, transport of a chemical by means of a cell surface receptor in a eukaryotic cell to cytoplasm inside a coated vesicle from an extracellular side using an organic molecule. This process requires chemical energy and free-energy.

Outer membrane HIDE

In cell communication with mitochondrial signal leading to apoptosis, a semiautonomous organelle is confined by an outer membrane

what are the functions of a biomembrane?

Inquire found this answer to your question about biomembrane:

Functions of a biomembrane

- A chemical is moved through a biomembrane
- A chemical is blocked by a biomembrane

Some functions of different types of biomembranes

- Plasma membrane HIDE
 - Transport of an organic molecule in a cell to an extracellular side with a transport vesicle from cytoplasm through a plasma membrane using another organic molecule. This process requires chemical energy and free-energy.
 - A cell is recognized by another cell at a plasma membrane
 - In receptor mediated endocytosis, directed motion a chemical is moved in a plasma membrane through a coated pit, a cytoplasmic side, an extracellular side, a hydrophobic core and an intermembrane space
 - In coated pit, transport of a chemical by means of a cell surface receptor in a eukaryotic cell to cytoplasm inside a coated vesicle from an extracellular side using an organic molecule. This process requires chemical energy and free-energy.

Outer membrane HIDE

In cell communication with mitochondrial signal leading to apoptosis, a semiautonomous organelle is confined by an outer membrane

Generating good sentences is a research problem in natural language generation

See http://kbgen.org

Relate Structure to Function

What structures of a plasma membrane facilitate a function of the plasma membrane, namely active movement of ions?

The membrane at the boundary of every cell that acts as a selective barrier, regulating the cell's chemical

An ion transport protein that generates voltage across a

Structural and Functional Relationships

What is the structural relationship between hydrolytic enzymes and eukaryotic cells?

Only structural slots

A type of <u>cell</u> with a <u>membrane</u>-enclosed <u>nucleus</u> and <u>membrane</u>-enclosed <u>organelles</u>. <u>Organisms</u> with <u>eukaryotic cells (protists, plants, fungi, and animals)</u> are called <u>eukaryotes</u>.

A <u>membrane</u>-enclosed <u>sac</u> of <u>hydrolytic enzymes</u> found in the <u>cytoplasm</u> of <u>animal cells</u> and some <u>protists</u>.

Lysosomal enzymes are synthesized in the cytosol and the endoplasmic reticulum. Some important lysosomal enzymes include lipase, carbohydrase, proteases, nucleases and phosphoric acid

<u>Hydrolytic enzymes</u> are <u>enzymes</u> which are involved in break-down of biological <u>molecules</u>

AURA

Path-Based Similarity Reasoning

Aquaporin is to osmosis as stoma is to what?

Aquaporin, which is a hydrophobic substance is to Osmosis as stoma is to Transport in plant. Here are the similar relationships:

46

Open Research Problems

- What are some longer-term research problems?
 - Defining spatial slots for the whole book
 - Specifically, boundaries, regions and cavities
 - Preliminary work done by Bennett et. al. published at the 2013 Conference on Spatial Information Theory
 - Available at: <u>http://www.ai.sri.com/pub_list/1959</u>
 - Specifying the structure at multiple levels of detail and from multiple perspectives

Prior Work

- Structure, Behavior & Function (Chandrasekhran, 2000)
- Basic Foundational Ontology (Arp & Smith, 2008)
- General Formal Ontology (Herre, et. al., 2006)
- DOLCE (Borgo et. al. 2010)

Outline

- Project Overview
- KB_Bio_101
 - Representing structure and function
 - Representation and Reasoning needs
 - Upper ontology
 - Representing structure
 - Representing function
 - Representing structure function relationship
 - Answering questions
- Some open research problems
- Summary

Conceptual Modeling Challenges

	Challenge
Structure and Function	Relating structure and function
Regulation	Qualitative reasoning about dynamic processes
Energy Transfer	Representing energy production, consumption
Continuity and Change	Representing genetic change across generations
Evolution	Models of population dynamics
Science as a Process	Experimentation and hypothesis testing
Interdependence in Nature	Represent large inter-related complex systems
Science, Technology, Society	Represent technological and social forces

The design and experimentation methodology that we showed for structure and function needs to be applied to all core themes

Conceptual Modeling Challenges

Number of Sentences from chapters 2-12

AURA

Ontology Management Challenges

AURA

- Ontology evaluation
 - Which parts of KB_Bio_101 are high quality? Which can be improved?
- Ontology modularization
 - Can we extract meaningful modules from KB_Bio_101?
- Ontology design patterns
 - What are repeating patterns of axioms in KB_Bio_101?
- Ontology testing and debugging
 - Is KB_Bio_101 consistent? What are maximally consistent subsets?

Summary

- KB_Bio_101
 - is a core component of an intelligent biology textbook
 - was authored using a state of the art modeling tool
 - a valuable resource for AI research on
 - efficient reasoning with hierarchical graphs
 - pushing the boundaries of logic programming and description logics
 - conceptual modeling techniques
 - ontology management methods
 - natural language generation
 - automated knowledge acquisition

Thank You!

This work is owned by Vulcan Inc. and is licensed for use under the Creative Commons Attribution-NonCommerical-ShareAlike 3.0 license (<u>http://creativecommons.org/licenses/by-nc-sa/3.0/</u>). Vulcan Inc., June 2013