
(&0�:RUNLQJ�*URXS�±�3URSRVDO�IRU�'LVFXVVLRQ��������������

�

Document Management Versioning Strategy

1.0 Background and Overview

Versioning is an important component of content creation and management. Version
management is a key component of enterprise content management. The content we
work with to do the Bank’s work goes through many changes during its lifetime. Bank
teams working to develop content need to:

o Create new content and permission others to contribute to its development �QHZ�FRQWHQW�YHUVLRQV�;
o Find the most current working version for the purpose of reviewing, editing,

collaborating, and approving �ZRUNLQJ�YHUVLRQ�;
o Discover all of the edits and comments that comprise a new version when it is in

progress in order to decide which to accept and which to reject, in order to reach
consensus and discuss changes with the team members who made them �ZRUNLQJ�YHUVLRQ�;

o Identify the order in which the changes were made – which supercede which �ZRUNLQJ�YHUVLRQ�;
o Create a new authoritative version which integrates the institutional knowledge

and comments of the experts �DSSURYHG�YHUVLRQ�;
o Discover earlier, approved versions of the content entity �VXSHUFHGHG�YHUVLRQV�.

2.0 Definition of Versions

Version, as it relates to content management, refers to a form or variation on an earlier
instance. Version management and control pertains to all kinds of content, including
data, documents/reports, communications, publications, and so on. Version
management and control includes overall versioning strategy (state- or change-based
approach), rules for selecting versions, the retention of versions and the
linking/organization of versions. This proposal addresses the overall strategy, the rules
for identifying and enumerating versions, and the linking/organization of versions.
Advice on the retention of versions should be provided by the World Bank Group
Archivist.

3.0 Business Drivers – World Bank’s Need for a Versioning Strategy

Simply put, the current approach to versioning is unmanaged. The current approach:

o Leaves much of the versioning activity entirely outside of the content
management systems – in productivity tools;

o Relies on users to deliberately assign a version status at the time of profiling – if
and when they file the content in the content management system;

o Uses only generic and uncontrolled version status words – draft, final – leaving
interpretation open to users

o Addresses versioning loosely and edition not at all -- version and edition are two
dimensions of the same concept – multiple ‘final’ versions which represent

(&0�:RUNLQJ�*URXS�±�3URSRVDO�IRU�'LVFXVVLRQ��������������

�

different editions of the same content may exist entirely independent of one
another

o There is no way to pull together in a ‘version series’ view all working and final
versions of a document

o There is no way to mark as superceded content which should not longer be used
for Bank work, having a more recent and up to date version.

o Version proliferation is likely occurring on desktops, on network drives and in
corporate information systems.

In the past, we have not had the capability to support versioning at the content or the
system level. As a result, Bank teams must devote extra effort to tracking and
managing versions, including:

o Using email to share working versions of content
o Checking and comparing the date properties to determine which is the most

recent working version
o Tracking the sender of an emailed document to determine who made edits
o Looking inside a document in hopes that the last person editing turned on the

‘track changes’ feature – in order to see the edits

4.0 Version Management Options and Strategies

Two version management and control options were considered: (a) single level version
management, and (b) multi-level version management. Both approaches support a
change-based versioning management strategy. Both approaches assume that all
versions which are retained will be linked through metadata. For a discussion of how
the actual changes to documents are captured and managed, please refer to the
Annotation Strategy.

4.1 Single Level Version Management Strategy

Single-level versioning assigns a new, incrementally calculated version number to teach
changed document. Single-level means a single digit designation for version number
(i.e. 1, 2, 3, 4, 5, etc.). Each new edit or change promotes a new version of the
document, and assigns a new version number.

While single version numbering would allow us to at least distinguish one version from
another. However, it does not allow us to identify or distinguish major and minor
versions, nor working from final versions. This option is not a practical option for the
Bank given all the consultation, review and editing that is involved in the development of
content.

Table xx.
Sample Use Case for Proposed Versioning Strategy

Versioning Action Version
Irma creates a new minor Version #1

(&0�:RUNLQJ�*URXS�±�3URSRVDO�IRU�'LVFXVVLRQ��������������

�

version document to explain
company policy

Status: In process current

The next day Susan checks
out the document to add in
new text

Version #2
Status: In process current

Susan then checks the
document back in and saves
her edits

Version #3
Status: Formal final draft

Susan sends a copy to IQ
team for review and
comments

Version #4
Status: Formal final draft

Luisita checks out the
document for review and adds
a new policy statements

Version #5
Status: In process current

Luisita checks in the
document and saves the
changes

Version #6
Status: New version of
formal final draft

Denise checks out the
document to add text to
Luisita’s new policy statement

Version #7
Status: In process current

Denise checks in the
document and saves the new
text

Version #8
Status: New version of
formal final draft

The ISG SLT reviews the
policy statement and decides
it is ready for formal approval.
Luisita checks the document
out, changes deliberately
promotes the policy
statement.

Version #9
Status: Formal final version

4.2 Multi-Level Version Management Strategy

Multi-level version management supports:

o Uses a syntax which is comprised of both the major and the minor version
properties – 3.1 where first digit (e.g. 3) represents the major version, and
the second digit (e.g. 1) represents the minor version;

o Uses a consistent numbering strategy which is both human- and machine-
triggered:

� Newly created content objects where there is no pre-existing major
version �HQXPHUDWLRQ� ������

� Designation of Major Versions based on human-initiated approval and
status changes �HQXPHUDWLRQ� �����;

� Designation of Minor Versions based on system check-out and check-
in actions which represent working edits and changes �HQXPHUDWLRQ� ����������������

� Superceded version status (human-initiated status changes) �HQXPHUDWLRQ� �V����

(&0�:RUNLQJ�*URXS�±�3URSRVDO�IRU�'LVFXVVLRQ��������������

�

o Assigns of a unique version number to each version of a document regardless
of whether the content is a major version or a minor version;

o Allows editors to designate a final version by assigning a major version
number to a document.

o Enables editors and contributors to determine the nature of the significance
of the changes made by others, and to distinguish formal, final versions of
documents from working or in-progress versions by checking the version
enumeration.

Below is a use case showing how the proposed strategy might be used to designate and
track versions of a document. Real names and scenarios have been used to make it
easier for us to understand how it would be used.

Table xx.
Sample Use Case for Proposed Versioning Strategy

Versioning
Action

Version Version Version Version

Irma creates a
new minor
version
document to
explain
company policy

Version: 0.1
Status: In
process current

The next day
Susan checks
out the
document to do
add in new text

Version: 0.1
Status: In
process current

Version 0.2
Status:
Checked Out

Susan then
checks the
document back
in and saves her
edits

Version: 0.1
Status:
Superceded

Version 0.2
Status:
Current

Susan sends a
copy to IQ team
for review and
comments

Version: 0.1
Status:
Superceded

Version 1.0
Status:
Current

Luisita checks
out the
document for
review and adds
a new policy
statements

Version: 0.1
Status:
Superceded

Version 1.0
Status:
Current

Version 1.1
Status: In
process
Checked Out

Luisita checks in
the document
and saves the
changes

Version: 0.1
Status:
Superceded

Version 1.0
Status:
Current

Version 1.1
Status: In
process
Current
Version

Denise checks Version: 0.1 Version 1.0 Version 1.1 Version 1.2

(&0�:RUNLQJ�*URXS�±�3URSRVDO�IRU�'LVFXVVLRQ��������������

�

out the
document to
add text to
Luisita’s new
policy statement

Status:
Superceded

Status:
Current

Status: In
process
Current
Version

Status In
Process
Checked Out

Denise checks in
the document
and saves the
new text

Version: 0.1
Status:
Superceded

Version 1.0
Status:
Current

Version 1.1
Status: In
process
Current
Version

Version 1.2
Status In
Process
Current

The ISG SLT
reviews the
policy statement
and decides it is
ready for formal
approval.
Luisita checks
the document
out, changes
deliberately
promotes the
policy
statement.

Version: 0.1
Status:
Superceded

Version 1.0
Status:
Current

Version 1.1
Status: In
process
Current
Version

Version 1.2
Status In
Process
Current

Version
2.0
Status
Approved

Option 2: Multi-level Version Management is the preferred option, based on the way
that Bank teams work together to create content, specifically the strategy identifies and
tracks: (a) Major Versions; (b) Minor Versions; (c) Superceded versions;

5.0 Version Management Architecture

5.1 Version Management Components

Metadata Links and references
Configuration of checkin/checkout functionality for multilevel versioning
Version attribute as metadata

5.2 Version Management Functionality and Processes

The Version Management strategy going forward should support….

o Version management support includes:

o Check-in/check-out capabilities which trigger and tag versions of content;
o Version Property management – providing a history of the content state as it

is checked in and out of an object store;
o Capability to individually save and maintain each version of content in the

content management system;
o Ability to bind minor versions to a major version;
o Capability to retain all edits, not only the most recent backup copy of a

document, and incrementally designate new minor versions upon check-in;

(&0�:RUNLQJ�*URXS�±�3URSRVDO�IRU�'LVFXVVLRQ��������������

�

o Versioning strategy leverages the property values of a document in
productivity software, but also records the version properties as persistent
metadata in the ECM metadata repository;

o Version Series Management -- Ability to retain all minor versions of a content
object until a person deliberately creates an approved, major version;

o Abililty to distinguish between working versions (minor), approved versions
(major), and published (publication location).

� Content may be approved without needing to be published to a
specific location;

� A single approved version may be published in multiple locations;
� Minor versions may need to be published before they are approved to

a secure space.
o Allows Bank teams to promote a minor version to a major version without

checking the document in and out (human initiated promotion)
o Allows Bank teams to demote a major version to a minor version without

checking the document in and out (human initiated demotion)
o Allows Bank teams to limit/permission access to minor versions;

6.0 Implementing a Version Management Strategy for New ECM Content

There are two versions of the ‘To Be’ version management strategy: (a) one which
describes operational version management for new content created in ECM; and (b) one
which brings the current content into alignment – to the extent possible – with the going
forward strategy.

6.1 Operationalizing Version Management

6.2 Versioning of Existing Content

It is not practical to have two conflicting versioning strategies in place in a future
enterprise content management system. Therefore, we need to have a strategy for
versioning existing content that resembles or is at least not too different from the
multilevel versioning strategy.

We realize that any retrospective strategy:

o Is likely to be suboptimal in that it will rely on judgment calls and comparisons
o Will aggregate versions of content at a high level
o Will not have the content base to aggregate at minor levels

o All content is not likely to be filed in IRIS
o Older versions may have been overwritten depending on the software

configuration
In order to retrospectively convert and aggregate versions, we need a process and we
will need some technologies (software which semantically compares and reports on the
goodness of fit of two or more content objects). We propose the following process for
retrospectively versioning content:

(&0�:RUNLQJ�*URXS�±�3URSRVDO�IRU�'LVFXVVLRQ��������������

�

Step 1. Convert metadata for content which already has a Metadata Value to the new
strategy

o Working within the existing folder structure
o Query for content that has status values: draft, final
o Compare the metadata for items that have status values
o Semantically compare content

o Where version candidates are found, a human will review and authorize the
conversion

o Define conversion table for changing the status value to a version number
o Define the exception rules

o Where there is only one final version, all draft or other versions will be
tagged as minor versions

o Minor version numbers will be assigned sequentially based on date and
time stamps for the documents

o As content is migrated to ECM folders from desktops and network drives, it is
automatically compared – semantically and metadata - to existing content

o Where version candidates are found, person

Step 2. Aggregate the incoming metadata for all content versions

o New attribute ‘version number’ is created for all ECM content and documents
o Version metadata is recorded in the metadata segment for migrated content
o Add standard text that indicates the version number was added after the fact, as

part of the ECM migration strategy and that the version number is for version
series management purposes only

