THE VALUE PROPOSITION OF SEMANTIC TECHNOLOGIES AND ONTOLOGIES FOR THE EARTH SCIENCES

A Brief Overview

Krzysztof Janowicz

University of California, Santa Barbara, USA

August, 2012

THE VALUE PROPOSITION OF SEMANTIC TECHNOLOGIES AND ONTOLOGIES

KRZYSZTOF JANOWICZ

FROM WHY TO HOW

- Discussions on the use and benefits of semantic technologies are shifting away from the why to the how
- Surprisingly this more in stakeholder interest is not accompanied by a more detailed understanding of what semantics research is about
- We need to emphasize the paradigm shift proposed by semantics research while abstracting from technical details and advocate the added value for the individual stakeholder
- Still, we should not oversell

For details see:

- Krzysztof Janowicz, Pascal Hitzler, The Digital Earth as Knowledge Engine. Semantic Web 3 (3), 213-221, 2012.
- Krzysztof Janowicz, Pascal Hitzler, Key Ingredients For Your Next Semantics Elevator Talk. In: Proceedings SeCoGIS 2012. To appear.

PUBLISHING AND RETRIEVING

For the individual scientist, the added value of semantic technologies and ontologies starts with publishing own data. By creating more intelligent metadata, researchers can:

- Support the discovery and reuse of their data
- Improve the **reproducibility** of their scientific results
- Reduce the risk that their data and results are misinterpreted
- Meet the data requirements of journals and funding organizations

Participating in the Semantic Web is a staged process with a low entry level

- Large & active community in science, government, and industry
- Many open source and commercial tools and infrastructures
- Existing ontologies and huge amounts of interlinked data
- Highly modular and distributed, no SPOF

INTERACTING AND ACCESSING

One of the key paradigm shifts proposed by the Semantic Web is to enable the creation of **smart data** in contrast to smart applications, i.e., move more of the business logic in the data, not the software.

- Smart data enables more usable, flexible, and robust applications, while smarter applications fail to improve data along the same dimensions
- Semantic technologies and ontologies reduce implementation and maintenance costs
- Access external datasets via own preferred user interface
- **Exploratory interaction** with heterogeneous data
- Interlinked data provides context and disambiguation

REUSING AND INTEGRATING

Semantic technologies and ontologies support **horizontal** as well as **vertical** workflows.

- Data-Model Intercomparison ontologies reduce the risk of combining unsuitable data and models.
- Semantic technologies support the creation of rules for integrity constraint checking
- Semantic technologies foster interoperability without restricting diversity which is a motor of (interdisciplinary) science
- Semantic technologies and ontologies can also assist scientists in selecting appropriate analysis methods
- To a certain degree, the Semantic Web can help to automatically translate between conceptual models

A FINAL THOUGHT

... It seems that we hope to arrive at semantic **interop**erability by standardization instead of investing into research on alignment and semantic translation to reduce incompatibility. This may turn out to be a fundamental **misconception**. I believe that standardization is the more difficult of both approaches...