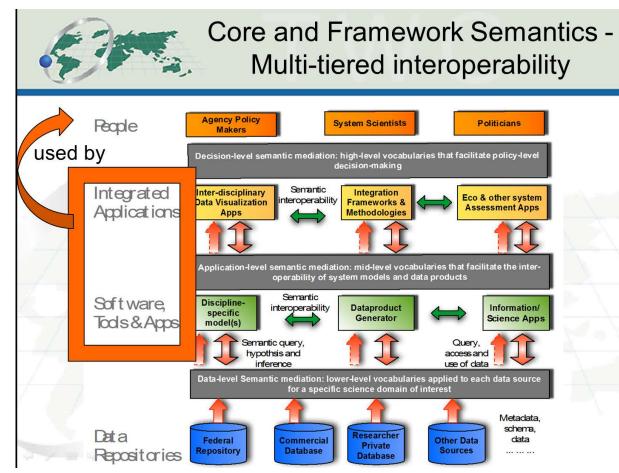
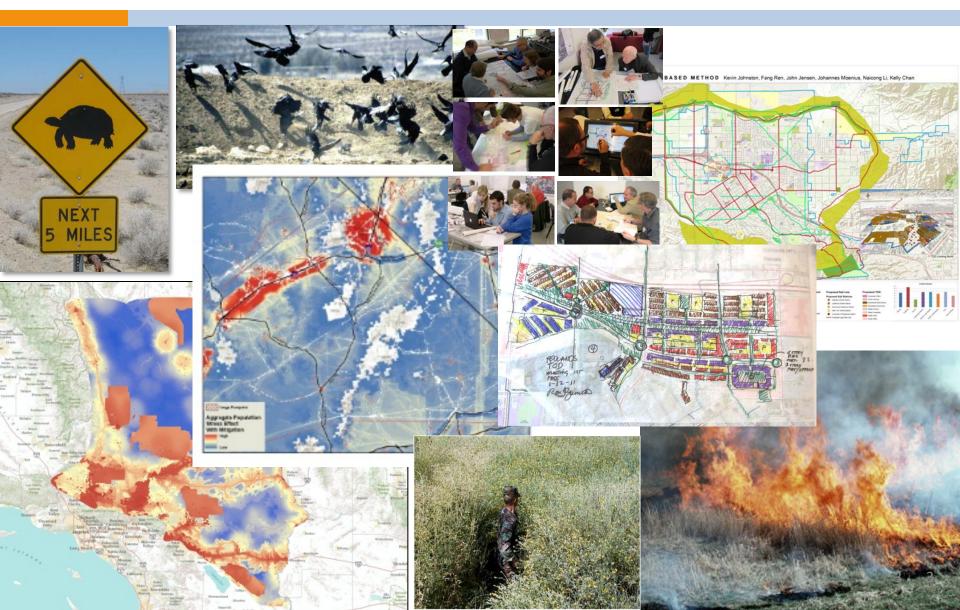
Ontologies and Spatial Decision Support

Naicong Li, Philip Murphy, The Redlands Institute, University of Redlands Krzysztof Janowicz, University of California, Santa Barbara


Earth Science-Ontolog mini series, Session 2 September 6, 2012

The Redlands Institute Tough Challenges. Smart Decisions

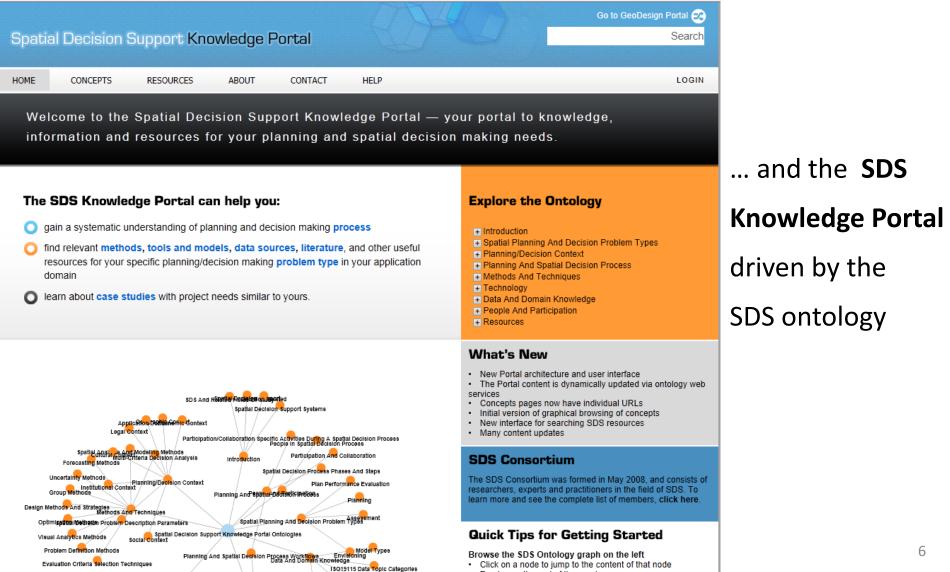

Earth sciences and decision making

- Down stream application for earth science data and models – informing decsion making
- Data and models will have added value when easily discovered and accessed as useful resources for informing large-scale planning and decision making.
- Need for decision level semantics

Peter Fox, Earth science-Ontolog mini series, 2012

Large-scale planning and decision problems

Large-scale planning and decision problems


Characteristics of large scale planning and spatial decision problems

- Complex
- Involving spatial and temporal dimensions
- Computationally demanding
- Inherently cross domain
- Involving interaction between natural and human systems
- Finding spatial decision support (SDS) resources often faces Big Data problem
 - Where are the good datasets, tools and models
 - Which ones are most appropriate for the problem at hand
- Interoperability problem among SDS resources

Need for formalizing the knowledge in SDS

- Registration, automatic discovery and access of SDS resources (e.g. workflow templates, methods and algorithms, models and tools, data, cases studies)
- Encourage modular, reusable models and tools development
- Facilitate interoperability among models and tools
- Automatic workflow composition and orchestration
- Provide a common vocabulary for the user community
- Facilitate learning in SDS

One solution – SDS ontology

Pan to see the rest of the graph

The SDS Consortium

Reclands THE REDLANDS INSTITUTE	The Redlands Institute	University of Redlands	PENN <u>State</u>	Krzysztof Janowicz	University of California, Santa Barbara
	Stephen Bathgate & Duncan Ray	Forest Research		Karen Kemp	The Kohala Center
	Luc Boerboom	University of Twente	what if?, Inc.	Richard E. Klosterman	What if?, Inc.
The University of Georgia	Susan Crow	University of Georgia	Place Matters	Jason Lally & Ken Snyder	PlaceMatters
U.S. Fish & Wildlife Service	Catherine Darst	US Fish & Wildlife Services	MICHIGAN STATE UNIVERSITY	Arika Ligmann- Zielinska	Michigan State University
W INDIANA UNIVERSITY BLOOMINGTON	Hamid Ekbia	Indiana University	Western	Jacek Malczewski	University of Western Ontario
SLU	Ljusk Ola Eriksson	Swedish University of Agricultural Sciences	A	Andrew Miller	Ecological Applications
🐺 HARVARD UNIVERSITY	Stephen M Ervin	Harvard Graduate School of Design	www.spatial Decisions Division Spatial Decisions Division GIS Solutions & Applications	Philip Murphy	InfoHarvest, Inc.
Consulting. Inc. Decision Technologies For Land Planning	Brenda Faber	Fore Site Consulting, Inc.	WASHINGTON	Timothy L. Nyerges	University of Washington
Massachusetts Institute of Technology	Mike Flaxman	MIT	JPL	Rob Raskin	NASA / Jet Propulsion Laboratory
Universiteit Utrecht Faculty of Geosciences	Stan Geertman	Utrecht University	PNW	Keith Reynolds	USDA Forest Service
UCSB	Michael Goodchild	University of California, Santa Barbara	😽 HARVARD UNIVERSITY	Carl Steinitz	Harvard University
INTERFOREST LLC	Sean Gordon	Interforest LLC	MISSOURI	Mingzhen Wei	Missouri University of Science and Technology
OTTO OTTO Where Winnerge o Otago NEW Z BALLAND	Brent Hall	University of Otago	Oregon State University	Dawn J. Wright	Oregon State University
of Wyoming		University of Wyoming	Center for Regional Development BICSU	Xinyue Ye	Bowling Green State University
San Diego State University	Piotr Jankowski	San Diego State University	UF FLORIDA	Paul Zwick	University of Florida 7

Content of the SDS ontology

- Planning/decision problem types
- Planning process workflows and steps
- Strategies, methods and techniques that are commonly associated with different workflow steps
- Models and tools supporting spatial planning
- Data sources supporting spatial planning
- Spatial planning/decision support case studies
- Related concepts supporting the descriptions of the above

Spatial planning and decision problem types

Impact /

All management a assessment focus distinction betwee causality, wherea period of time, the environmental coi prospective in the alternative manag

Related Plan NEPA Planning Pl Scenario Planning

Related Metl

Forecasting Meth Spatial Analysis A Uncertainty Metho

Related Too

Coastal Landscap Communityviz EZ-IMPACT HARVEST IDRISI IDRISI Land Chan Invest Toolbox LANDFIRE Landscape Mana Landscape Succe

Land-Use Change And Analysis System (LUCAS)

Site Search Or Selection

Site selection involves identifying elements or biodiversity reserve or designation for timber the two are sufficiently different to justify ma assigning a set of alternative uses to all part general matrix of parcels that

Synonyms

site search; site selection

Related Planning Related Tools

Vista

Zonae Cod

Related

C-Plan MARXAN / <u>SPEXAN</u> MARXAN V

Related Methods Sites/Site

Multi-Criteria Decision Al Uncertainty Methods

Related Tools

Suitability /

Assessments of suitabili

and impact assessment.

status or impact assessn

land suitability; water res

Conservation Process W

Urban Planning Process

Synonyms

AHP-OWA In Arcgis Arcgis Coastal Landscape Anal Communityviz Conservation Assessme Ecosystem Assessment & Reporting Toc Ecosystem Management Decision Suppo EZ-IMPACT IDRISI Invest Toolbox

Marine Reserve And Local Fisheries Inte NED Netweaver

Program To Assist In Tracking Critical Ha Refuge GAP

Remsoft Spatial Planning System Landscape Successional Model (LANDSUM) Scheduling in the context of GeoDesign problems can be thought of as a special case of selection and allocation problems in which temporal constraints also are important. A typical example of this type of problem is timber-harvest scheduling, in which there are

constraints on both the types and timing of activities that can be implemented in neighboring units. These types of problems almost

Network Design

Network design in the context of spatial decision problems is concerned with delineation of pathways through some spatial domain. Obvious examples in this realm include design of road and utility networks, which typically seek least-cost pathways that may involve both spatial and temporal considerations. The spatial computation for this class of problem is almost always global. In addition to the more conventional notion of networks in terms of roads and utilities, in conservation biology, there is also the notion of reserve networks. To the extent that an analysis for reserve design explicitly treats connectivity of patches through connecting corridors, this is an apt characterization.

Related Planning/Decision Process Workflows

Geodesign Process Workflow

Related Methods

Agent Based Approach Anticipatory Approach Combinatorial Approach Constraining Approach Mixed Approach Optimizing Approach Rule Based Approach Sequential Approach

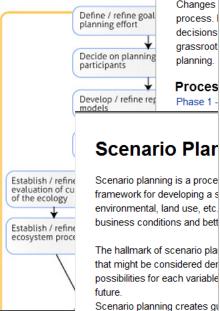
Subcategories

Reserve System Transportation, Vehicle Routing And Scheduling

Location Allocation

9 Spatial allocation is primarily concerned with designating what kinds of activities can or will be done where on the lands

SeoDesign Portal 😎


ization problems.

Search

Spatial planning workflows

Adaptive Natural Resource Plan

A prototypical process flow for adaptive natural resource managem well the post planning steps such as implementation, monitoring, ar adaptive. The management process itself is iterative, with the result process. If the goal of managing the resource is to sustain that reso An iteration of a Natural Resource

Stakeholders, including the p

future vision that provides a f

scenarios and discussing the

discuss trade-offs, and make

Scenario planning is a flexible

quality of life, urban form, tra geographic scales (including

critical component in using th

Conservation Pro

The conservation process workflow re developed by The Trust for Public Lan

Process Phases

CPW Phase 1 - Location Profiling CPW Phase 2 - Stakeholder Engager

Urban Planning Process

Urban plar

urbanized created th

ideals bas Steinitz's Framework

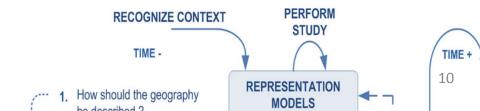
Steinitz's framework is a conceptual framework proposed by Carl Steinitz (1990) to describe six levels of inquiry during a spatial decisio process; each level is associated with a type (phase) of modeling with GIS to form a comprehensive expression of a decision support strategy for landscape planning and design:

E2

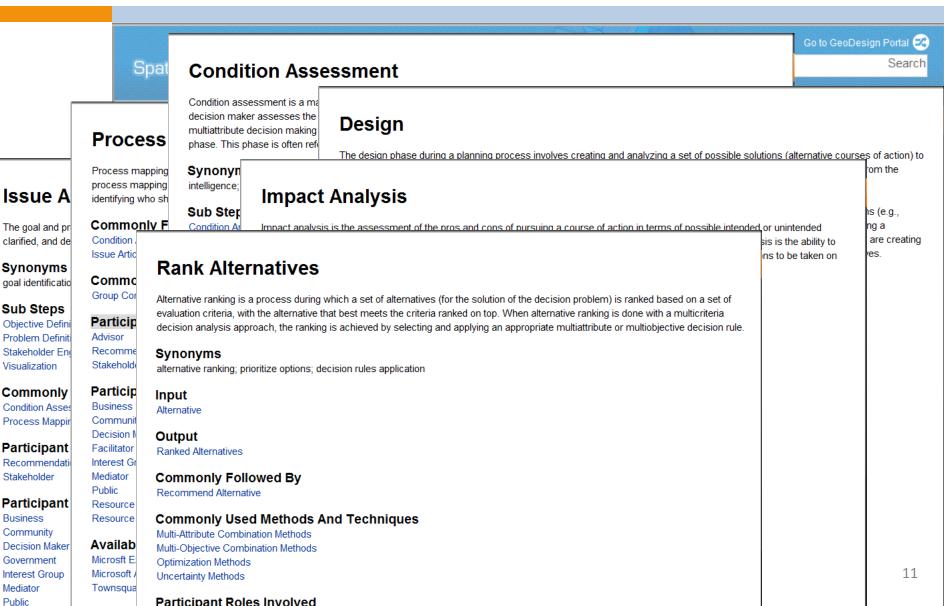
arch

Phase I: How should the state of the landscape be described in content, space, and time? This question is answered by REPREENTATION MODELS, the data upon which the study relies.

Phase II: How does the landscape operate? What are the functional and structural relationships among its elements? This question is answered by PROCESS MODELS that provide information for the several assessments that are the content for the study.


Phase III: Is the current landscape working well? This question is answered by EVALUATION MODELS, which are dependent on the cultural knowledge of the decision-making stakeholders.

Phase IV: How might the landscape be altered, by what policies and actions, where and when? This question is answered by the CHANGE MODELS that will be tested in the research. They are also data, as assumed for the future.


Phase V: What difference might the changes cause? This question is answered by IMPACT MODELS, which are information produced by the process models under changed conditions.

Phase VI: How should the landscape be changed? This question is answered by DECISION MODELS, which, like the evaluation model are dependent on the cultural knowledge of the stakeholders and responsible decision-makers.

As indicated in the following diagram, the decision process flow may go back to a previous phase if the conclusion for the current phase indicates the need:

Steps in a spatial planning workflow

Methods, techniques, algorithms

Spatia	Spatial Decision Support Knowledge Portal						Go to GeoDesign Portal 🤕 Search
HOME	CONCEPTS	RESOURCES	ABOUT	CONTACT	HELP		LOGIN

Multi-Criteria Decision Analysis

Impact A

Methods f							
decisions	Analy	ytical Hi	erarchy F	Process			Heuris
(MCDM). I incommer							
two broad	The Ana		_	_			In computer se
Both MAD	psychold	Pairwis	se Comp	arison			problem in ma
categories	provides those ele		•			Geneti	not be proven
required d	decision	The pairwise				Geneu	method to find
the corres	decision	involves pair	Value/U	tility Fun		A genetic algo	For Decisi
problem e	element	as output. S	Value/O	and i and		problems. Ge	Balance Bene
uncertainl decision a	estimate	(reciprocal) weights con	The utility fund		Rati	chromosome	Maximize Ben
assume a	makers	weights con	both the conc			problem evolv	Minimize Nega
criteria va	makers	Used For	the nature of t	Criterior	The ratir	are also possi	
	importar	Specify Crite	approach). Th		100 can	generation, th	Used For I
Abbrev	evaluatic problem		the utility funct	Multicriteria Decis	Used I	population (ba	Alternative Ge Alternative Sci
MCDA	element	Number	function (Keer	information about	Specify	population is t	Rank Alternati
•	making t	n(n - 1)/2	attribute, and a convenient r	derivation of weig	Specify	generations h a maximum n	r turner i territuti
Synony multi-crite	numbers	Respons	inherently prol	evaluation criterio	Numb	amaximanni	Subcatego
muiu-crite	courses	Ratio Scale	interently prof	the criterion in the	n	For Decisi	Metropolis Has
For Dec			The value and	Synonyms		Balance Bene	Simulated Anr
Alternative	Abbre	Underlyi	decisions requ	weights assessm	Respo	Maximize Ben	Source Of
Suitability	AHP	statistical/he	The individual	g	Interval	Minimize Neg	Source Of http://en.wikipe
	Used I	Truchus	in the decisior	Used For De	Under	ىط Used For	
Implem	Conditio	Trustwo High	probabilistic, a	Specify Criterion	none	Alternative Gene	
Conserval Criterium	Constrai	riign	For Decisi	Implementer		Alternative Scree	
DEFINITE	Evaluatio	Precisio	Balance Bene	Implementec Conservation Ass	Trustv	Rank Alternative	s

Conservation Ass

ET UIDAOT

Maximize

High

Weighted Linear Combination

Weighted linear combination is the most often used technique for tackling spatial n procedure based on the concept of a weighted average. The decision maker direct attribute. A total score is then obtained for each alternative by multiplying the impor value given to the alternative on that attribute, and summing the products over all a the alternatives, the alternative with the highest overall score is chosen. The GIS-b steps:

1. Define the set of evaluation criteria (map layers) and the set fo feasible alternation 2. Standardize each criterion map layer.

Define the criterion weights; that is, a weight of relative importance is directly as

4. Construct the weighted standardized map layers; that is, multiply standardized i

Generate the overall score for each alternative using the add overlay operation of

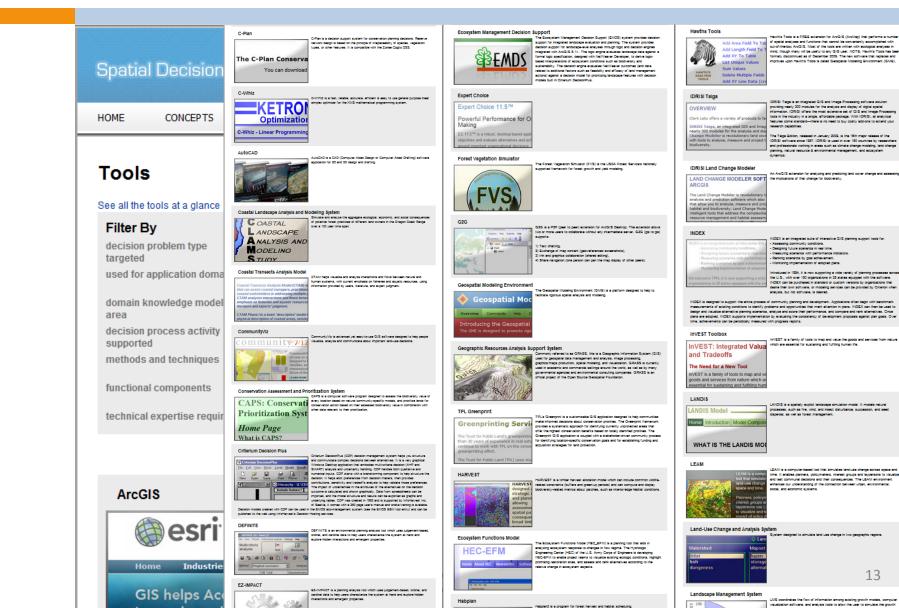
Rank the alternatives according to the overall performance scores; the alternative

The weighted linear combination method can be operationalized using any GIS sys techniques allow the evaluation criterion map layers (input maps) to be aggregated The method can be implemented in both raster and vector GIS environments.

Abbreviation

WLC

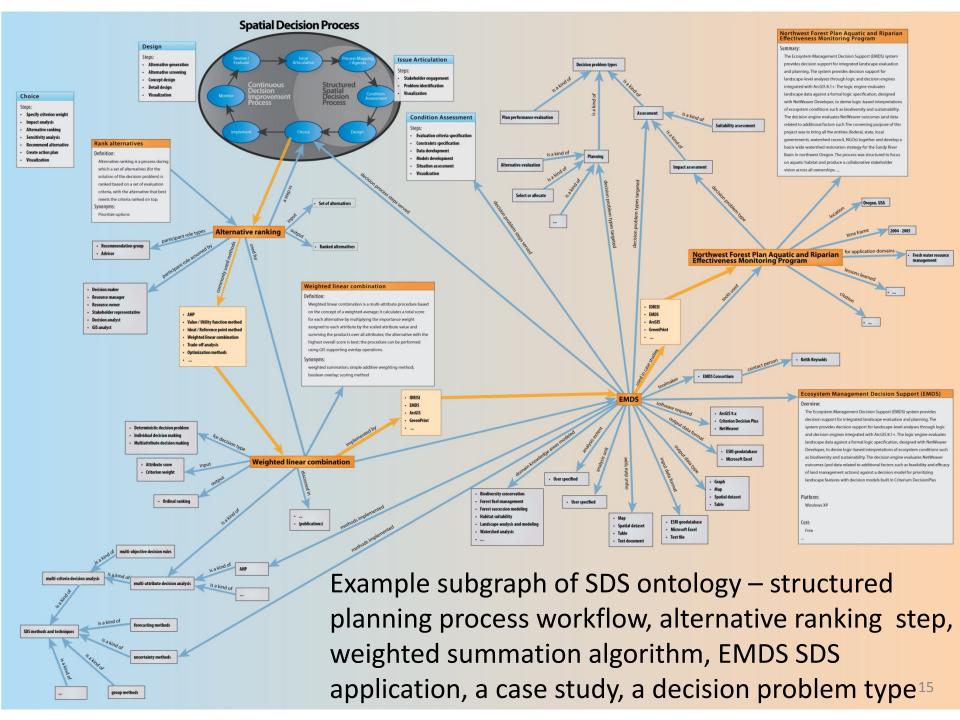
Synonyms


weighted summation; boolean overlay; simple additive weighting method; SAW; so

Used For Decision Process Phases/Steps

Condition Analysis And Assessment Impact Analysis Rank Alternatives

Input


Software models, tools, services

Case studies

HOME	CONCEPTS	RESOURCES	ABOUT	CONTACT	HELP		
Case	Studies						Ontology Hiera
Filter E	By					show all	
decision p	problem type	tools and models	used				
application	on domain	location					
	/decision process v adopted	start year					
planning/ steps inv	decision process	end year					
The cit systen evalua and thi invento first- a abiotic relation	n (GIS) and the NED- ate alternative scenari ird goals were maint: ories incorporated da nd second-order stre c and biotic forest cha nships of these lands sses were shaping th	and, used a combina 1 system, to analyze ios for management aining and enhancing ta needed to evaluat eams. While providing tracteristics, the NED scape elements. The	tion of computer risks to the long of the lands. Wh g the forest habit e wildlife habitat g a platform for th -1 decision sup need to unders ynthesis of tools	-term sustainability ile maintaining wat tat as a contribution composition and s he management an port software did no tand how landscap	arily the ArcView geographic y of their reservoir lands and ter quality was the primary go n towards regional biodiversi tructure and the quality of ha nd analysis of data on numer of provide a mechanism for the context and current ecolog I stepping outside the decisi	to develop and bal, the second ity. NED-1 abitat along rous key evaluating the gical	

Sawtooth National Forests in southern Idaho and northern Utah decided to update their plans together in order to better understand larger landscape issues and to address their many common concerns more efficiently. National forest plans do

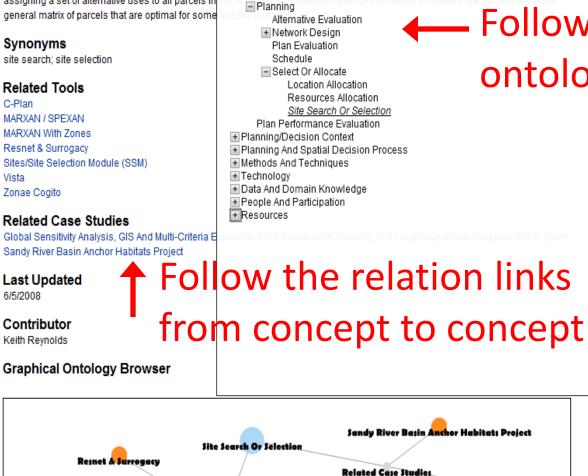
Site Search Or Selection

Site selection involves identifying elements of the I biodiversity reserve or designation for timber harve the two are sufficiently different to justify maintainin assigning a set of alternative uses to all parcels in general matrix of parcels that are optimal for some

Synonyms site search: site selection

Related Tools

C-Plan MARXAN / SPEXAN MARXAN With Zones Resnet & Surrogacy Sites/Site Selection Module (SSM) Vista Zonae Cogito


Related Case Studies

MARXAN With Zones

Last Updated 6/5/2008

Contributor

Keith Revnolds

There are currently no assigned tags

Ontology Hierarchy

— Follow the ontology hierarchy

filter hierarchy

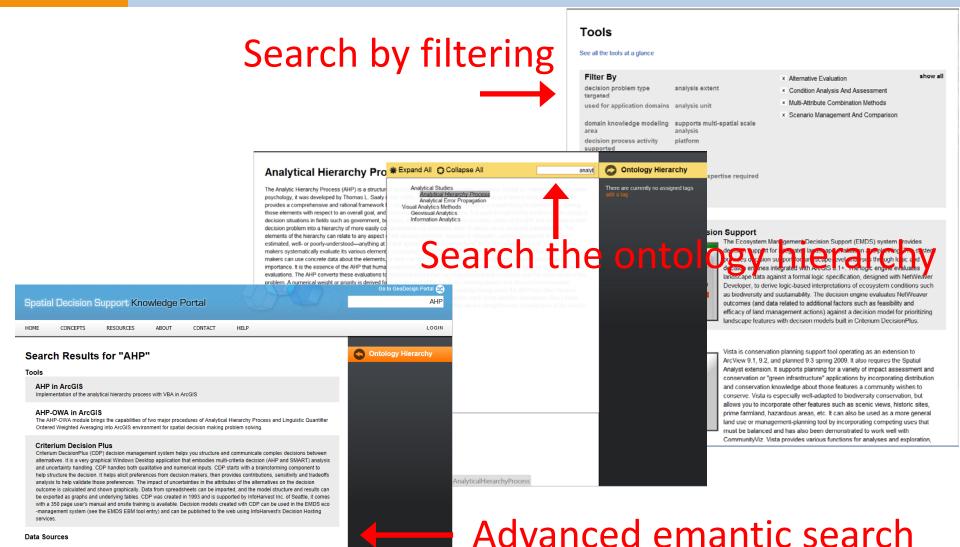
Global Sensitivity Analysis, GIS And Multi-Criteria E Sandy River Basin Anchor Habitats Project

Expand All Collapse All

Spatial Planning And Decision Problem Types

+ Introduction

Envisionina

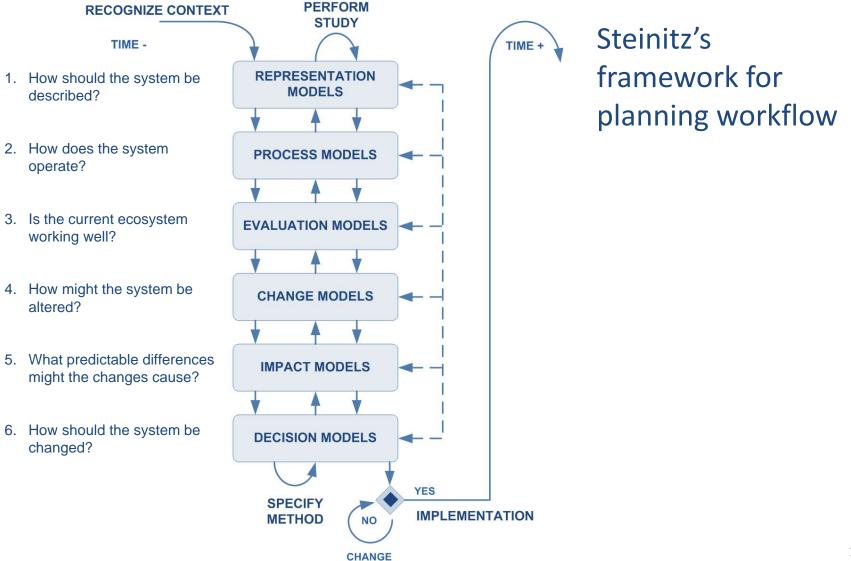

+ Assessment

Resnet & Surrogacy **Related Case Studies** Global Sensitivity Analysis, GIS And Multi-Criteria Evaluation For A Sustainab Zonae Cogito **Related** Tools Sites/Site Selection Module (SSM) Graphical browsing MARXAN / SPEXAN

Vista

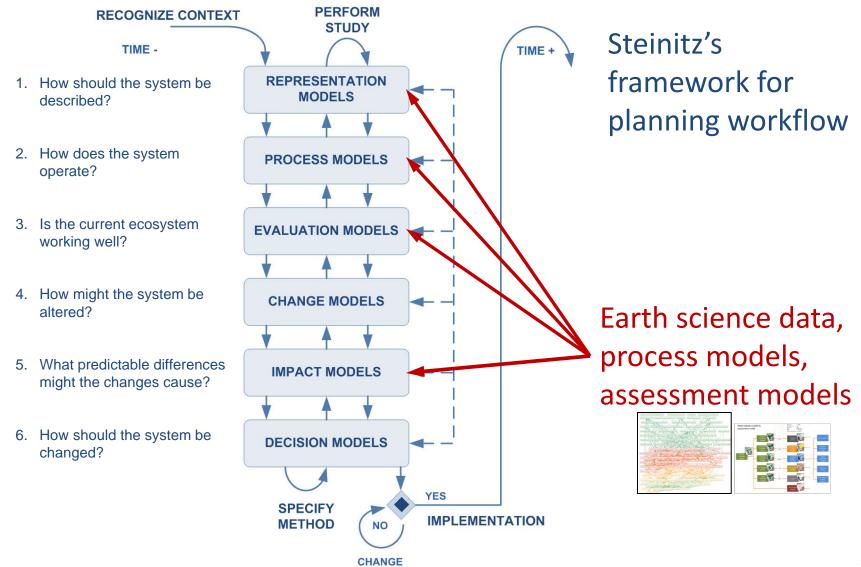
C-Plan

Searching on SDS Knowledge Portal


Case Studies

Toronto quality of life

This paper proposes to use principles of geographic visualization in conjunction with multi-criteria evaluation methods to support expert-level spatial decision-making. Interactive maps can be combined with analytical tools to explore various settings of multicriteria evaluation parameters that define different decision-making stratenies. In a case study, the analytic hierarchy process From Ontologies (directly) to Computational Workflows


- Ontologies are not just for conceptual clarity (though we love that!) and for organizing things
- Decision support researchers and practitioners need them to create interoperable computational applications that deliver decision support for solving Grand Challenge planning and decision problems.

A planning process workflow

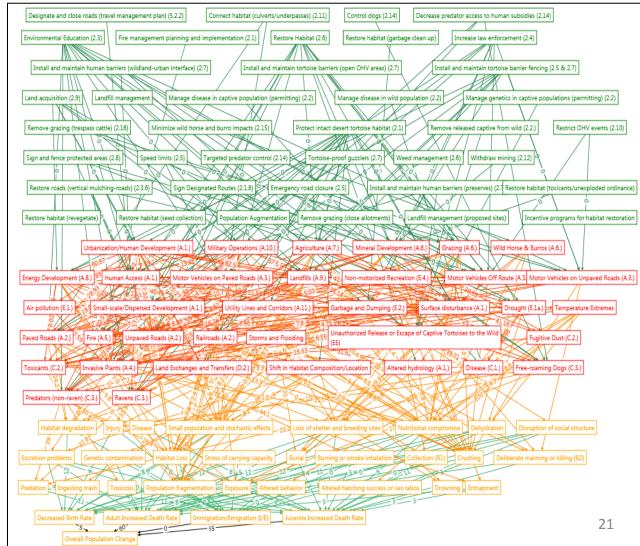
SCALE

Earth sciences data and modes in planning workflow

SCALE

Example of Earth Science models

-- Process model used in Desert Tortoise Recovery (DTRO) SDS, driving tortoise population change assessment calculation

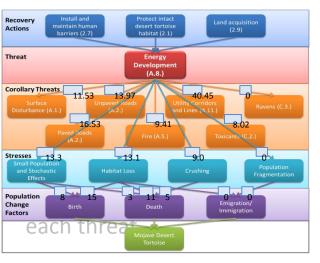

The Fish and Wildlife Service (FWS) DTRO office identified:

Which *Recovery Actions* can be introduced to abate the threat

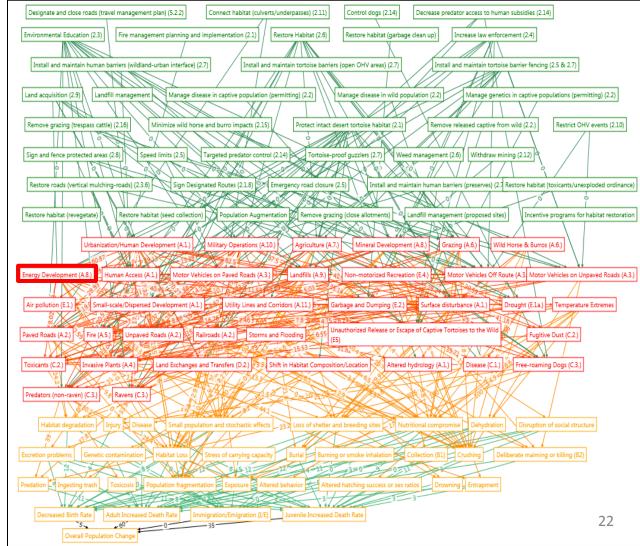
The *threats* caused by each threat

The *stresses* caused by each threat

Which *factors* each stress causes to *overall population change*

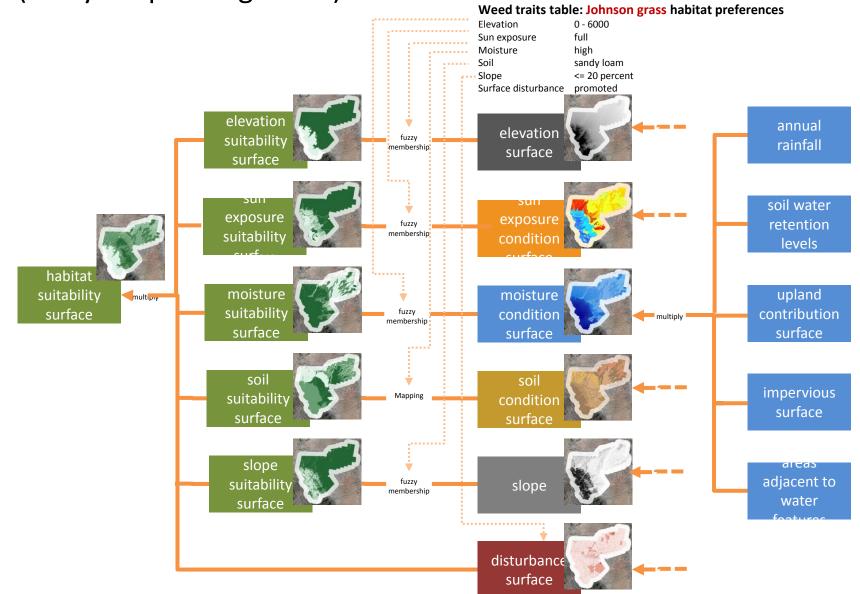


Example of Earth Science models


-- Process model used in Desert Tortoise Recovery SDS

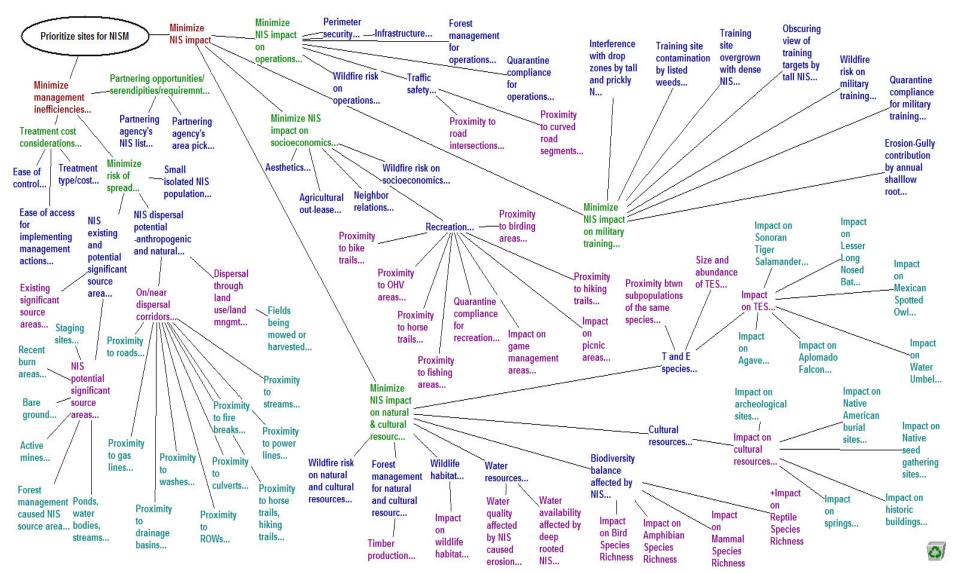
The FWS DTRO created this process model by creating Threat "tiles"

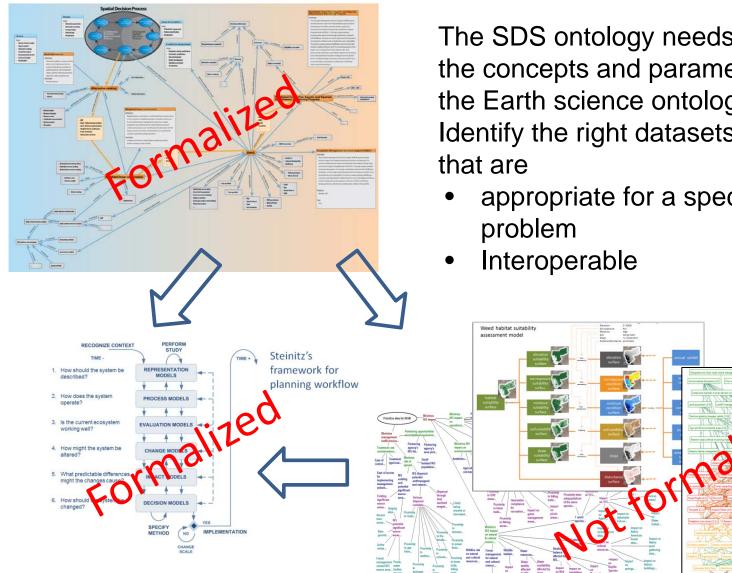
Which *Recovery Actions* A threat description the threat based on the Threat design pattern



Which *factors* each stress causes to *overall population change*

Example of Earth Science models

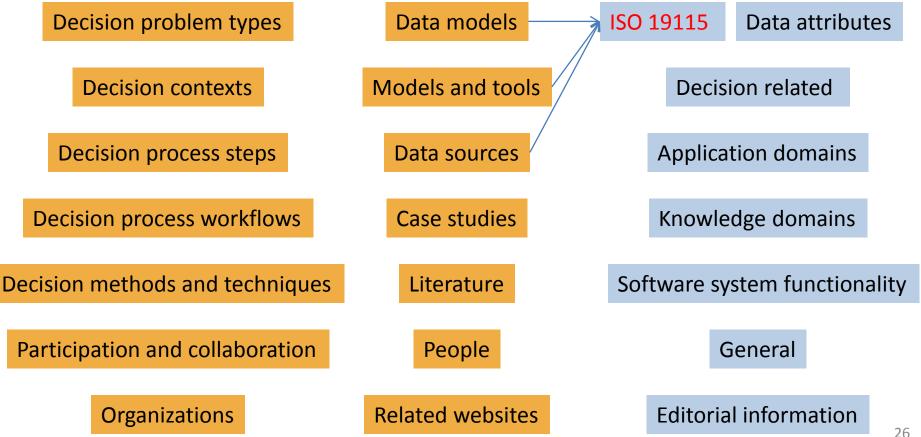

-- Non-native invasive species habitat suitability assessment model (Army Corp of Engineers)


23

Example of decision models

-- Non-native invasive species management on military installations

Earth science ontologies and SDS ontology

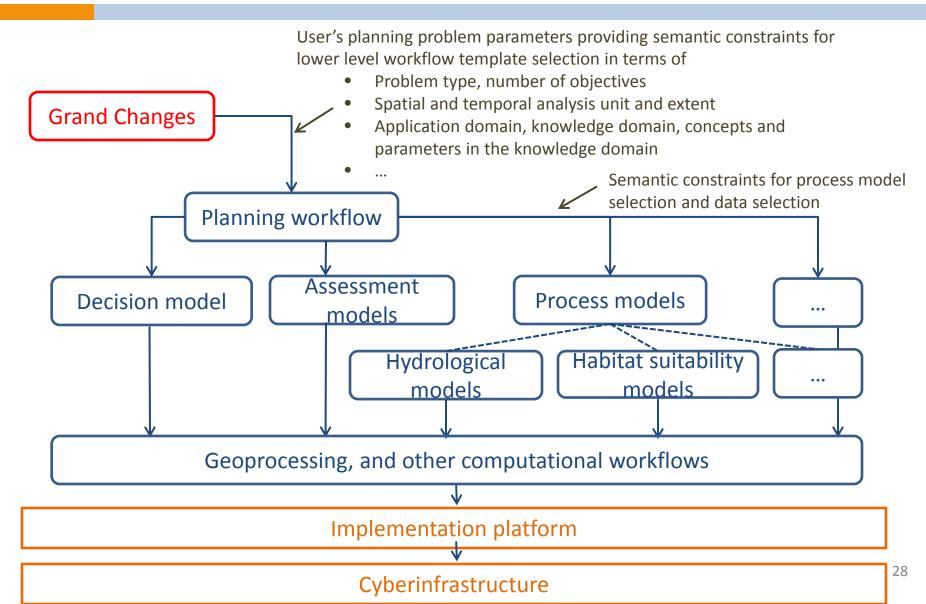

The SDS ontology needs to reference the concepts and parameters defined in the Earth science ontologies to Identify the right datasets and models

appropriate for a specfic decision

25

Earth science ontologies and SDS ontology

The SDS ontology currently refers to ISO 19115 for data topic concepts (not granular enough)



Earth science ontologies and SDS ontology

The models sub ontology in SDS ontology only refers to knowledge domains taxonomy, but not specific concepts within Earth science domains – need to connect to earth science ontologies

Workflow composition guided by SDS ontology and Earth science ontologies

Contact

- Naicong Li, <u>naicong li@spatial.redlands.edu</u>
- Philip Murphy, philip:murphy@spatial.redlans.edu
- Krzysztof Janowicz, jano@geog.ucsb.edu

See also:

- www.spatial.redlands.edu/sds
- Li, N., Raskin, R., Goodchild, M. and Janowicz K. (2012) An Ontology-Driven Framework and Web Portal for Spatial Decision Support. *Transactions in GIS* 16(3): 313-329.