

ifgi Institute for Geoinformatics University of Münster

musil

What does it take to interoperate?

Semantic interoperability revisited in terms of human digital communication

Simon Scheider

Münster Semantic Interoperability Lab (MUSIL)

EarthScienceOntolog: Panel Session-03 - Thu 2012-10-11

ifgi Institute for Geoinformatic University of Münster

Illustration 1: How to map a sports ground

Taken from Harvey et al. 1999

Illustration 2: How to represent Frankfurt Zeil

Frankfurt Zeil is a famous pedestrian shopping area in Frankfurt a. Main

Is it a road object with motor traffic restrictions? Or a public place? Or a non-identifiable part of the city surface?

Type of a road object without motor traffic (embedded road graph)

The challenge of interoperability in a nutshell

Source: A. Kleon

From multi term -single perspective

- The problem cannot be reduced to labeling, i.e., to establishing standard terms for given concepts
- Conceptualizations vary considerably, that is, each dataset comes with an intrinsic perspective, and for good reasons
- To the extent that things and their categories in one perspective do not exist in another one
- Sometimes, terms may not even be comparable across perspectives

[&]quot;Is this a meadow, a field, or a vacant lot?"

^{...} to multi term -multi perspective

name1

Paradigms of semantic interoperability and corresponding strategies

4/11

Paradigm	Main idea	Heterogeneity strategy	Means to semantic interoperability	Critical assumption
Holistic standardization	Term-meaning standardization	Heterogeneity resolution	Ability to subscribe to a standard	Term-meaning can be standardized
Top-level ontology alignment	Alignment with core standard	Heterogeneity avoidance	Ability to align with core standards	Core term- meaning can be standardized
Pluralist peer- to-peer translation	Term similarity and translation Semantic imi	Heterogeneity mitigation itation	Ability to translate between similar terms	Term-meanings are comparable and mappable
Bottom-up construction	Term-meaning generation	Heterogeneity articulation	Ability to understand semantic differences	Term-meanings can be reconstructed
Human- machine- human communication	Term-meaning communication	Heterogeneity articulation	Ability to act on information	Term-meanings can be communicated

Interoperability as communication problem

Sharing meanings is a result of human communication. It requires understanding acts of reference.

MUSIL

Institute for Geoinformatics University of Münster

5/11

Sharing meaning requires recomputing it in terms of shared operations

Theses (c.f. Scheider 2012):

- Meaning is something that observers do (speech act that joins human attention on a reproducible phenomenon)
- Sharing meaning requires "imitation": Regenerating it in terms of shared operations (perceptual, technical, and constructive)
- Conventional reference formalisms can be grounded in such operations

≅ Semantic Reference Systems (Kuhn 2003)

Imitation of "**holding sth. in front**" by robots (Sauser and Billard 2005)

⁷¹Interoperability as result of semantic imitation

- The provider supplies data and takes on the role of a teacher.
- The user tries to imitate the provider by **reconstructing data categories** in terms of a grounding level
- The task of the provider is to **teach data categories** with respect to a grounding level (by examples and rules)
- The game is evaluated by **classification quality** (precision and recall) of examples

ifgi Institute for Geoinformatic University of Münster

Semantic imitation tools: the big picture

8/11

Semantic imitation tools: example 1

Semantic imitation tools: example 2

Thank you!

Adams, B., and Janowicz K. (2011) Constructing Geo-Ontologies by Reification of Observation Data

Harvey F. et al. 1999: Semantic interoperability: a central issue for sharing geographic information

Janowicz, K. (2012) Observation-Driven Geo-Ontology Engineering, TGIS

Kamlah, W. and Lorenzen P: (1996) Logical propaedeutics. Preschool of sensible discourse

Kuhn, W. (2003) Semantic reference systems. Int. J. Geogr. Inf. Science 17(5) 405-409.

- Sauser, E. and Billard, A. (2005) Three Dimensional Frames of References Transformations using Recurrent Populations of Neurons. Neurocomputing, 64, 5-24
- Scheider, S. (2012) Grounding geographic information in perceptual operations www.geographicknowledge.de/pdf/MyThesis.pdf :

Scheider S. and Possin J. (2012) Affordance-based individuation of junctions in Open Street Map

Institute for Geoinformatic: University of Münster