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Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership,
not-for-pro�t computer industry standards consortium that produces and maintains com-
puter industry speci�cations for interoperable, portable, and reusable enterprise applications
in distributed, heterogeneous environments. Membership includes Information Technology
vendors, end users, government agencies, and academia.
OMG member companies write, adopt, and maintain its speci�cations following a mature,

open process. OMG's speci�cations implement the Model Driven Architecture® (MDA®),
maximizing ROI through a full-lifecycle approach to enterprise integration that covers multi-
ple operating systems, programming languages, middleware and networking infrastructures,
and software development environments. OMG's speci�cations include: UML® (Uni�ed
Modeling Language�); CORBA® (Common Object Request Broker Architecture); CWM�
(Common Warehouse Metamodel); and industry-speci�c standards for dozens of vertical mar-
kets.
More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG speci�cations address middleware, modeling and vertical domain frameworks.
All OMG Speci�cations are available from the OMG website at:
http://www.omg.org/spec

Speci�cations are organized by the following categories:

� Business Modeling Speci�cations

� Middleware Speci�cations

� CORBA/IIOP

� Data Distribution Services

� Specialized CORBA

� IDL/Language Mapping Speci�cations

� Modeling and Metadata Speci�cations

� UML, MOF, CWM, XMI

� UML Pro�le

� Modernization Speci�cations

� Platform Independent Model (PIM), Platform Speci�c Model (PSM), Interface Speci-
�cations

� CORBAServices

� CORBAFacilities

viii
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� OMG Domain Speci�cations

� CORBA Embedded Intelligence Speci�cations

� CORBA Security Speci�cations

All of OMG's formal speci�cations may be downloaded without charge from our website.
(Products implementing OMG speci�cations are available from individual suppliers.) Copies
of speci�cations, available in PostScript and PDF format, may be obtained from the Speci�-
cations Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG speci�cations are also available as ISO standards. Please consult http://
www.iso.org.

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements
from ordinary English. However, these conventions are not used in tables or section headings
where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface De�nition Language (OMG IDL) and syntax
elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt.: Exceptions

NOTE: Italic text represents names de�ned in the speci�cation or the name of a document,
speci�cation, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this speci-
�cation to http://www.omg.org/report_issue.htm.

ix

pubs@omg.org
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http://www.iso.org
http://www.omg.org/report_issue.htm


1. Scope
This OMG Speci�cation speci�es the Distributed Ontology, Modeling and Speci�cation Lan-
guage (DOL) designed to achieve integration and interoperability of ontologies, speci�cations
and models (OMSs for short). DOL is a language for distributed knowledge representa-
tion across multiple OMSs, particularly OMSs that have been formalized in di�erent OMS
languages. This OMG Speci�cation responds to the OntoIOp Request for Proposals[RFP].
di�erent OMS languages. This OMG Speci�cation responds to the OntoIOp Request for
Proposals [RFP].

1.1. Background Information
Logical languages are used in several �elds of computing for the development of formal,
machine-processable texts that carry a formal semantics. Among those �elds are 1)Ontologies
formalizing domain knowledge, 2) (formal)Models of systems, and 3) the formal Speci�cation
of systems. Ontologies, models and speci�cations will (for the purpose of this document)
henceforth be abbreviated as OMS, if all three can be treated in the same way.
OMS provide formal descriptions the scope of which ranges from domain knowledge and

activities (ontologies, models) to properties and behaviours of hardware and software sys-
tems (models, speci�cations). These formal descriptions can be used for the analysis and
veri�cation of both domain models, system models and systems, using rigorous and e�ec-
tive reasoning tools. Since these models and systems become increasingly complex, usually a
monolithic description is not feasible. Instead, di�erent viewpoints on one domain or systems
are modeled. Hence, interoperability becomes a crucial issue, in particular, formal interoper-
ability, i.e. interoperability that is based on the formal semantics of the di�erent viewpoints.
Interoperability is both about interfacibility, enabling the use of several OMS in a common
application scenario, as well as about coherence and consistency, ensuring at an early stage
of the development that a coherent system can be reached.
In complex applications, which involve multiple OMSs with overlapping concept spaces,

data mapping is also required on a higher level of abstraction, viz. between di�erent OMSs,
and is then called OMS alignment. While OMS alignment is most commonly studied for OMSs
formalized1 in the same OMS language, the di�erent OMSs used by complex applications may Note(1)
also be written in di�erent OMS languages. This OMG Speci�cation faces this diversity not
by proposing yet another OMS language that would subsume all the others. Instead, it accepts
the diverse reality and formulates means (on a sound and formal semantic basis) to compare
and integrate OMSs that are written in di�erent formalisms. It speci�es DOL (Distributed
Ontology, Modeling and Speci�cation Language), a formal language for expressing not only
OMSs but also mappings between OMSs formalized in di�erent OMS languages.
Thus, DOL gives interoperability a formal grounding and makes heterogeneous OMSs and

services based on them amenable to checking of coherence (e.g. consistency, conservativity,
intended consequences, and compliance).

1
Note: spell-check everything for British. TM: why British? OMG is an American organization.

1



1. Scope

1.2. Features within Scope
The following are within the scope of this OMG Speci�cation:

1. heterogeneous OMSs that combine parts written in di�erent languages

2. mappings between (possibly structured and/or heterogeneous) OMSs (mapping OMS
symbols to OMS symbols)

3. translations between di�erent OMS languages conformant with DOL (translating whole
OMSs to another language)

4. annotation and documentation of OMSs, mappings between OMSs, symbols, and sen-
tences

5. recommendations of vocabularies for annotating and documenting OMSs

6. a syntax for embedding the constructs mentioned under (1)�(4) as annotations into
existing OMSs

7. a syntax for expressing (1)�(3) as stando� markup that points into existing OMSs

8. a formal semantics of (1)�(3)

9. criteria for existing or future OMS languages to conform with DOL

The following are outside the scope of this OMG Speci�cation:

1. the (re)de�nition of elementary OMS languages, i.e. languages that allow the declara-
tion of OMS symbols (non-logical symbols) and stating sentences about them

2. algorithms for obtaining mappings between OMSs

3. concrete OMSs and their conceptualization and application

4. mappings between services and devices, and de�nitions of service and device interop-
erability.

This OMG Speci�cation describes the syntax and the semantics of the Distributed On-
tology, Modeling and Speci�cation Language (DOL) by de�ning an abstract syntax and an
associated model-theoretic semantics for DOL.

2



2. Conformance
This clause de�nes conformance criteria for languages and logics that can be used with the
distributed ontology, modeling and speci�cation language DOL, as well as conformance cri-
teria for serializations, translations and applications. This OMG Speci�cation describes the
conformance with DOL of a number of OMS languages, namely OWL 2, Common Logic,
RDF and RDFS, as well as translations among these, in its informative annexes.
It is expected that DOL will be used for more languages than this normative set of DOL-

conformant languages. There will be a registry for DOL-conformant languages and
translations hosted at http://ontohub.org. This will ensure that this OMG Speci�ca-
tion remains interoperable with past, present and future OMS languages, even if they do not
appear in this OMG Speci�cation or do not even have been standardized (yet). The registry
shall also include descriptions of DOL-conformant languages and translations (as well as other
information needed by implementors and users) in machine-processable form.
There will be Maintenance Authority (MA)1 established to maintain the registry as an

informative resource governed by the standard. The registry contents itself will not be nor-
mative; however, it is expected to become the basis for normative activities.

2.1. Conformance of an OMS language/a logic with
DOL

Rationale: for an OMS language to conform with DOL,

� its logical language aspect either needs to satisfy certain criteria about its abstract
syntax or formal semantics itself, or there must be a translation (again satisfying certain
criteria) to a language that already is DOL-conforming.

� its structuring language aspect (if present) must not con�ict with DOL's own structur-
ing mechanisms

� its annotation language aspect must not con�ict with DOL's meta-language constructs.

We also de�ne di�erent conformance levels w.r.t. the usage of IRIs as identi�ers for all kinds
of entities that the OMS language supports.
An OMS language is conformant with DOL if it satis�es the following conditions:

1. its abstract syntax speci�ed as an SMOF compliant meta model or as an EBNF gram-
mar;

2. its logical language aspect (for expressing basic OMSs) is conformant, and in particular
has a semantics (see below),

3. it has at least one serialization in the sense of section 2.2;

4. either there exists a translation of it into a conformant language2, or:

1 or, depending on advisability, a Registration Authority
2For example, consider the translation of OBO1.4 to OWL, giving a formal semantics to OBO1.4).

3
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2. Conformance

a) the logical language aspect (for expressing basic OMSs) is conformant, and in
particular has a semantics (see below),

b) the structuring language aspect (for expressing structured OMSs and relations
between those) is conformant (see below), and

c) the annotation language aspect (for expressing comments and annotations) is
conformant (see below).

The logical language aspect of an OMS language is conformant with DOL if each logic
corresponding to a pro�le (including the logic corresponding to the whole logical language
aspect) is presented as an institution [10]. 3 Note that one OMS language can have several
sublanguages or pro�les corresponding to several logics (for example, OWL 2 has pro�les EL,
RL and QL, apart from the whole OWL 2 itself).
The structuring language aspect of an OMS language is conformant with DOL if it can

be mapped to DOL's structuring language in a semantics-preserving way. The structuring
language aspect may be empty.
The annotation language aspect of an OMS language is conformant with DOL if its con-

structs have no impact on the semantics. The annotation language aspect shall be non-empty;
it shall provide the facility to express comments.

2 Note(2)
We de�ne the following levels of conformance of the abstract syntax of a basic OMS lan-

guage with DOL, listed from highest to lowest:

Full IRI conformance The abstract syntax enforces that IRIs be used for identifying all sym-
bols and entities.

No mandatory use of IRIs The abstract syntax does not enforce that IRIs be used for identi-
fying all entities. Note that this includes the case of optionally supporting IRIs without
enforcing their use (such as in Common Logic).

Any conforming language and logic shall have a machine-processable description as detailed
in clause 2.3.

2.1.1. Conformance of language/logic translations with DOL
Rationale: a translation between logics must satisfy certain criteria in order to conform with
DOL. Also, a translation between OMS languages based on such logics must be consistent
with the translation between these logics. Translations should not break structuring language
aspects nor comments/annotations either.
A logic translation is conformant with DOL if it is presented either as an institution

morphism or as an institution comorphism.
A language translation is conformant with DOL if it is a mapping between the abstract

syntaxes that restricts to a conformant logic translation when restricted to the logical language

3Institutions are necessarily monotonic; conformance criteria for non-monotonic logics are still under
development. However, minimization provides non-monotonic reasoning in DOL. A further pos-
sibility to include non-monotonic logics is to construe entailments between formulas as sentences
of the institution.

2
Note: say something about “infrastructure theories”, i.e. axiomatizations of one logic in another logic.
Providers of OMS language translations MAY also provide these (given that the translation is theo-
roidal). Note the possible trade-off between readability and theorem proving complexity (as the infras-
tructure axioms may be complex) – so maybe we should encourage multiple alternative translations to
co-exist.
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aspect. Language translations may also translate the structuring language aspect, in this
case, they shall preserve the semantics of the structuring language aspect. Furthermore,
language translations should preserve comments and annotations. All comments attached
to a sentence (or symbol) in the source should be attached to its translation in the target
(if there are more than one sentences (resp. symbols) expressing the translation, to at least
one of them).

2.2. Conformance of a serialization of an OMS
language with DOL

Rationale: The main reason for the following speci�cations is identi�er injection. DOL is
capable of assigning identi�ers to entities (symbols, axioms, modules, etc.) inside fragments
of OMS languages that occur in a DOL document, even if that OMS language doesn't support
such identi�ers by its own means. Such identi�ers will be visible to a DOL tool, but not to
a tool that only supports the OMS language. To achieve this without breaking the formal
semantics of that OMS language, we make use of annotation or commenting features that
the OMS language supports, in order to place such identi�ers inside annotations/comments.
Depending on the nature of the concrete given serialization of the OMS language, be it plain
text, some serialization of RDF, XML, or some other structured text format, we can be more
speci�c about what the annotation/commenting facilities of that serialization must look like
in order to support this identi�er injection. Well-behaved XML and RDF schemas support
identi�er injection in a �nice� way (rather than using text-level comments). In the worst
case we can't inject anything into an OMS language fragment, because the OMS language
serialization simply wouldn't allow us to write suitable comments, but we'd have to point
into it from the outer space by using stando� markup.
Further conformance criteria in this section are introduced to facilitate the convenient reuse
of verbatim fragments of OMS language inside a DOL document.
Independently from these criteria, we distinguish di�erent levels of conformance of a serial-
ization w.r.t. its means of conveniently abbreviating long IRI identi�ers.
We de�ne four levels of conformance of a serialization of an OMS language with DOL.

XMI conformance An XMI serialization has been automatically derived from the SMOF
speci�cation of the abstract syntax, using MOF 2 XMI Mapping.3 Note(3)

XML conformance The given serialization has to be speci�ed as an XML schema, which
satis�es all of the following conditions:

� The elements of the schema belong to one or more non-empty XML namespaces.4 Note(4)

� The schema shall not forbid attributes from foreign namespaces (here: the DOL
namespace) on any elements56 Note(5)

Note(6)
3
Note: Christoph to all: I’m not sure how MOF and XMI works, i.e. how to inject identifiers into comments
there.

4
Note: FYI: That means that in a heterogeneous OMS we can recognize that a sentence is, e.g., stated
in OWL, without explicitly “tagging” it as “OWL” (which we would have to do in the case of a serialization
that is merely text conformant).

5
Note: Christoph (2014-03-26): the rationale is that in an XML serialization we wouldn’t want to inject
identifiers into completely unstructured XML comments (<!– . . . –>) but rather into well-structured
attributes from some DOL namespace to-be-defined (think of <axiom dol:id="foo-ax">)

6
Note: Maybe we also need child elements from different namespaces?
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RDF conformance The given serialization has to be speci�ed as an RDF vocabulary, which
satis�es all of the following conditions:

� The elements of the vocabulary belong to one or more RDF namespaces identi�ed
by absolute URIs.

� 7The serialization shall specify ways of giving IRIs or URIs to all structural ele- Note(7)
ments of an OMS.8 Note(8)

� There shall be no additional rules that forbid properties from foreign namespaces
(here in particular: the annotation vocabularies recommended by DOL9) to be Note(9)
stated about arbitrary subjects.10 Note(10)

Text conformance The given serialization has to satisfy all of the following conditions:

� The serialization conforms with the requirements for the text/plain media type
speci�ed in IETF/RFC 2046, section 4.1.3.

� The serialization shall provide a designated comment construct that can be placed
su�ciently �exible as to be uniquely associated with any non-comment construct
of the language. That means, for example, one of the following:

� The serialization provides a construct that indicates the start and end of
a comment and may be placed before/after each token that represents a
structural element of an OMS.

� The serialization provides line-based comments (ranging from an indicated
position to the end of a line) but at the same time allows the �exible place-
ment of line breaks before/after each token that represents a structural ele-
ment of an OMS.

Standoff markup conformance An OMS language is stando� markup conformant with DOL
if one of its serializations conforms with the requirements for the text/plain media type
speci�ed in IETF/RFC 2046, section 4.1.3. Note that conformance with text/plain is a
prerequisite for using, for example, fragment URIs in the style of IETF/RFC 5147 for
identifying text ranges.

11 Note(11)
Independently from the conformance levels given above, there is the following hierarchy of

conformance w.r.t. CURIEs as a means of abbreviating IRIs, listed from highest to lowest:

Prefixed CURIE conformance The given serialization allows non-logical symbol identi�ers
to have the syntactic form of a CURIE, or any subset of the CURIE grammar that
allows named pre�xes (prefix:reference). The serialization is not required to
support CURIEs with no pre�x.
Informative comment: In this case, a pre�x map with multiple pre�xesmay be used to

7
Note: Christoph (2014-03-26): The rationale is that RDF in principle allows for identifying everything, so
an RDF-based serialization of an OMS language should not forbid making use of such RDF constructs
that do allow for identifying arbitrary things.

8
Note: Q-AUT: And what if it doesn’t? e.g. OWL doesn’t specify IRIs for import declarations, so we
can, e.g., not annotate them when using the RDF serialization of OWL. We could only do it via RDF
reification, or by using an XML serialization.

9
Note: Christoph (2014-03-26): I think we are no longer explicity recommending annotation vocabular-
ies such as OMV, but nevertheless an RDF serialization of an OMS language must allow annotations to
things, using RDF properties that do not belong to the RDF vocabulary of the OMS language. It should
treat them like OWL treats annotation properties, i.e. as not changing the formal semantics.

10
Note: FYI: No well-behaved RDF vocabulary would do so, but we’d better be safe.

11
Note: FYI: The latter two seem trivial, but we need them to rule out ad hoc diagrams drawn on a napkin
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map the non-logical symbol identi�ers of a basic OMS to IRIs in multiple namespaces
(cf. clause 8.5.3)

Unprefixed names only The given serialization only supports CURIEs with no pre�x, or
any subset of the grammar of the REFERENCE nonterminal in the CURIE grammar.
Informative comment: In this case, a binding for the empty pre�x has to be declared,
as this is the only possibility of mapping the identi�ers of the basic OMS to IRIs, which
are located in one �at namespace.

CURIEs that have a pre�x may not be acceptable identi�ers in every serialization of a
basic OMS language, as the standard CURIE separator character, the colon (:), may not be
allowed in identi�ers. 12 Therefore, the declaration of DOL-conformance of the respective Note(12)
serialization (cf. clause 2.2) may de�ne an alternative CURIE separator character, or it may
forbid the use of pre�xed CURIEs altogether.
Any conforming serialization of an OMS language shall have a machine-processable de-

scription as detailed in clause 2.3.

2.3. Machine-processable description of conforming
languages, logics, and serializations

Rationale: When a parser processes a DOL ontology found somewhere, which refers to mod-
ules in OMS languages, or includes them verbatim, the parser needs to know what language
to expect; further DOL-supporting software needs to know, e.g., what other DOL-conforming
languages the module in the given OMS language can be translated to. Therefore we re-
quire that all languages/logics/serializations that conform with DOL describe themselves in
a machine-comprehensible way.
For any conforming OMS language, logic, and serialization of an OMS language, it is re-

quired that it be assigned an HTTP IRI, by which it can be identi�ed. It is also required
that a machine-processable description of this language/logic/serialization be retrievable by
dereferencing this IRI, according to the linked data principles. At least there has to be an
RDF description in terms of the vocabulary speci�ed in annex C, which has to be made
available in the RDF/XML serialization when a client requests content of the MIME type ap-
plication/rdf+xml. Descriptions of the language/logic/serialization in further representations,
having di�erent content types, may be provided.13 Note(13)

2.4. Conformance of a document with DOL
Rationale: for exchanging DOL documents with other users/tools, nothing that has a formal
semantics must be left implicit. One DOL tool may assume that by default any OMS frag-
ments inside a DOL document are in some �xed OMS language unless speci�ed otherwise,
but another DOL tool can't be assumed to understand such DOL documents. Defaults are,
however, practically convenient, which is the reason for having the following section about
the conformance of an application.

12
Note: Q-ALL: I recall that in the 2012-04-18 teleconference we agreed on this – but does it really make
sense? Are there any relevant OMS language serializations that do not allow : in identifiers (or that do
allow it theoretically but discourage it in practice) but allow some other non-letter character?

13
Note: FYI: that opens the door for, e.g., OMDoc
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A document conforms with DOL if it contains a DOL text that is well-formed according
to the grammar. That means, in particular, that any information related to logics has to be
made explicit (as foreseen by the DOL abstract syntax speci�ed in clause 8), such as:

� the logic of each OMS that is part of the DOL document,

� the translation that is employed between two logics (unless it is one of the default
translations speci�ed in annex G)

However, details about aspects of an OMS that do not have a formal, logic-based semantics,
may be left implicit. For example, a conforming document may omit explicit references to
matching algorithms that have been employed in obtaining an alignment.

2.5. Conformance of an application with DOL
In practice, DOL-aware applications may also deal with documents that are not conforming
with DOL according to the criteria established in clause 2.4. However, an application only
conforms with DOL if it is capable of producing DOL-conforming documents as its output
when requested.
We expect most DOL-aware applications to support a �xed (possibly extensible) set of OMS

languages conforming with DOL. It is, for example, possible that a DOL-aware application
only supports OWL and Common Logic. In that case, the application may process documents
that mix OWL and Common Logic ontologies without explicitly declaring the respective logics,
as the respective syntaxes of OWL and Common Logic can be distinguished by examining
the di�erent keywords. However, for DOL conformance, that application has to be capable
of exporting documents with explicit references to the logics used.

14 Note(14)
15

Note(15)

14
Note: applications need to strip DOL annotations from embedded fragments in other OMS languages

15
Note: applications need to be able to expand CURIEs into IRIs when requested
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16
Note: more, see RFP

17
Note: introduce a separate reference scheme for normative references

18
Note: Q-ALL: I have listed them roughly in the order of occurrence: OK?
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4. Terms and Definitions
19 Note(19)
For the purposes of this document, the following terms and de�nitions apply.

4.1. OMSs

OMS (ontology, specification or model)
set of expressions (like non-logical symbols, sentences and structuring elements) in a given
OMS language (or several such languages)
Note An OMS can be written in di�erent OMS language serializations.

OMS language
language equipped with a formal, declarative, logic-based semantics, plus non-logical anno-
tations
Note An OMS language is used for the formal speci�cation of OMSs.
Example OMS languages include OWL, Common Logic, F-logic, UML class diagrams,
RDFS, and OBO. 20 Note(20)

non-logical symbol,
OMS symbol
atomic expression or syntactic constituent of an OMS that requires an interpretation through
a model
Note The notion of �atomic sentence� used in logic is di�erent, it usually may involve
several non-logical symbols.
Example Non-logical symbols in OWL W3C/TR REC-owl2-syntax:2009 (there called �en-
tities�) comprise

� individuals (denoting objects from the domain of discourse),

� classes (denoting sets of objects; also called concepts), and

� properties (denoting binary relations over objects; also called roles).

19
Note: OMG specifications shall not contain glossaries, hence always refer to this section if definitions
of terms are needed.

20
Note: Are query languages, like SPARQL, considered by OntoIOp to be OMS languages? That is
an interesting point. I tend to say "yes", because we definitely want to have them in. However, query
languages do not fit exactly into the scheme of the OntoIOp notion of OMS language (and the underlying
notion of institution), because the latter is about satisfaction of sentences in models, whereas a query
language is about computing answer substitutions to queries. However, there is research about how
to relate and reconcile both (also in the institution community). I think we should devote an OntoIOp
telecon to this topic.
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This is opposed to logical symbols in OWL, e.g. those for intersection and union of classes.
Example Non-logical symbols in Common Logic ISO/IEC 24707:2007 comprise

� names (denoting objects from the domain of discourse),

� sequence markers (denoting sequences of objects).

This is opposed to logical symbols in Common Logic, e.g. logical connectives and quanti�ers.

vocabulary ,
signature
set (or otherwise structured entity) of non-logical symbols of an OMS
Note The signature of a term is the set of all non-logical symbvols occuring in the term.
The signature of an OMS language is the set of all non-logical symbols possible in that
language.
Note The signature of an OMS is usually uniquely determined.

model
semantic interpretation of all non-logical symbols of a signature
Note A model of an OMS is a model of the signature of the OMS that moreover satis�es
all the axioms of the OMS.
Note This term is not to be confused with model in the sense of modeling (i.e., the �M�
in OMS).

term
syntactic expression either consisting of a single non-logical symbol or recursively composed
of other terms (a.k.a. its subterms)

sentence
term that is either true or false in a given model, i.e. which is assigned a truth value in this
model.21 Note(21)
Note In a model, on the one hand, a sentence is always true or false. In an OMS, on the
other hand, a sentence can have several logical statuses: it can be an axiom, if postulated to
be true; a theorem, if proven from other axioms and theorems; a conjecture, if expecting to
be proven from other axioms and theorems; or have another of many possible statuses.
Note A sentence can conform to one or more signatures (namely those signatures con-
taining all non-logical symbols used in the sentence).
Note It is quite common that sentences are required to be closed (i.e. have no free vari-
ables). However, this depends on the OMS language at hand.

axiom
sentence postulated to be valid (i.e. true in every model)

21
Note: FYI: From Common Logic, I changed “unit of logical text” to “term”.
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theorem
sentence that has been proven from other axioms and theorems

satisfaction relation
relation between models and sentences indicating which sentences hold true in the model

4.2. Semantic Web

resourceweb
something that can be globally identi�ed
Note IETF/RFC 3986:2005, Section 1.1 deliberately de�nes a resource as �in a general
sense [. . .] whatever might be identi�ed by [an IRI]�. The original source refers to URIs, but
DOL uses the compatible IRI standard IETF/RFC 3987:2005 for identi�cation.
Example Familiar examples include an electronic document, an image, a source of infor-
mation with a consistent purpose (e.g., �today's weather report for Los Angeles�), a service
(e.g., an HTTP-to-SMS gateway), and a collection of other resources. A resource is not nec-
essarily accessible via the Internet; e.g., human beings, corporations, and bound books in a
library can also be resources. Likewise, abstract concepts can be resources, such as the oper-
ators and operands of a mathematical equation, the types of a relationship (e.g., �parent� or
�employee�), or numeric values (e.g., zero, one, and in�nity). IETF/RFC 3986:2005, Section
1.1

element (of an OMS)
any resource in an OMS (e.g. a non-logical symbol, a sentence, a correspondence, the OMS
itself, ...) or a named set of such resources.

linked data
structured data that is published on the Web in a machine-processable way, according to
principles speci�ed in [28, 5]
Note The linked data principles (adapted from [28] and its paraphrase at [40]) are the
following:

1. Use IRIs as names for things.

2. Use HTTP IRIs so that these things can be referred to and looked up (�dereferenced�)
by people and user agents.1

3. Provide useful machine-processable (plus optionally human-readable) information about
the thing when its IRI is dereferenced, using standard formats.

4. Include links to other, related IRIs in the exposed data to improve discovery of other
related information on the Web.

1I.e., the IRI is treated as a URL (uniform resource locator).
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Note RDF, serialized as RDF/XML [19], is the most common format for publishing linked
data. However, its usage is not mandatory.
Note Using HTTP content negotiation [16] it is possible to serve representations in dif-
ferent formats from the same URL.

4.3. OMS Annotation and Documentation

annotation
additional information without a logical semantics that is attached to an element of an OMS
Note Formally, an annotation is given as a (subject,predicate, object) triple as de�ned
by SOURCE: W3C/TR REC-rdf-concepts:2004, Section 6. The subject of an annotation is
an element of an OMS. The predicate is an RDF property de�ned in an external OMS and
describes in what way the annotation object is related to the annotation subject.
Note According to note 4.3 it is possible to interpret annotations under an RDF semantics.
�Without a logical semantics� in this de�nition means that annotations to an OMS are not
considered sentences of that OMS.

OMS documentation
set of all annotations to an OMS, plus any other documents and explanatory comments
generated during the entire OMS building process
Note Adapted from [39]

4.4. Structured OMSs

basic OMS
set of non-logical symbols, sentences, annotations about them, which is used as a building
block for a larger OMS

structured OMS
OMS that results from other OMSs by import, union, combination, renaming or other struc-
turing operations

subOMS
OMS whose sets of non-logical symbols and sentences are subsets of those present in a given
larger OMS

extension
OMS whose sets of non-logical symbols and sentences are supersets of those present in a given
smaller OMS
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consequence-theoretic conservative extension
extension that does not add new theorems (in terms of the unextended signature)
Note An extension O2 of an OMS O1 is a consequence-theoretic conservative extension,
if all properties formulated in the signature of O1 hold for O1 whenever they hold for O2.

model-theoretic conservative extension
extension that does not lead to a restriction of class of models of an OMS
Note An extension O2 of an OMS O1 is a model-theoretic conservative extension, if all
properties formulated in the signature of O1 hold for O1 whenever they hold for O2.
Note Any model-theoretic conservative extension is also a consequence-theoretic one.

conservative extension
consequence-theoretic or model-theoretic conservative extension
Note If used without quali�cation, the consequence-theoretic version is meant.

monomorphic extension
extension whose newly introduced non-logical symbols are interpreted in a way unique up to
isomorphism
Note An extension O2 of an OMS O1 is a monomorphic extension, if each model of O1

can be expanded to a model of O2 that is unique up to isomorphism.
Note Each monomorphic extension is also a model-theoretic conservative extension but
not vice versa.

definitional extension
extension whose newly introduced non-logical symbols are interpreted in a unique way
Note An extension O2 of an OMS O1 is a de�nitional extension, if each model of O1 can
be uniquely expanded to a model of O2.
Note O2 being a de�nitional extension of O1 implies a bijective correspondence between
the classes of models of O2 and O1.
Note Each de�nitional extension is also a monomorphic extension but not vice versa.

weak definitional extension
extension whose newly introduced non-logical symbols can be interpreted in at most one way
Note An extension O2 of an OMS O1 is a weak de�nitional extension, if each model of
O1 can be expanded to at most one model of O2.
Note An extension is de�nitional if and only if it is both weakly de�nitional and model-
theoretically conservative.

implied extension
model-theoretic conservative extension that does not introduce new non-logical symbols
Note A conservative extension O2 of an OMS O1 is an implied extension, if and only if
the signature of O2 is the signature of O1. O2 is an implied extension of O1 if and only if the
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model class of O2 is the model class of O1.
Note Each implied extension is also a de�nitional extension but not vice versa.

module
subOMS that conservatively extends to the whole OMS
Note The conservative extension can be either model-theoretic or consequence-theoretic;
without quali�cation, the consequence-theoretic version is used. 22 Note(22)

module extraction
activity of obtaining from an OMS concrete modules to be used for a particular purpose (e.g.
to contain a particular sub-signature of the original OMS)
Note Cited and slightly adapted from [39]
Note The goal of module extraction is �decomposing an OMS into smaller, more man-
ageable modules with appropriate dependencies� [38]

Example Consider an OWL DL ontology about wines, from which we would like to extract
a module about white wines. That module would contain the declaration of the non-logical
symbol �white wine�, all declarations of non-logical symbols related to �white wine�, and all
sentences about all of these non-logical symbols.

approximant
best possible (in the sense of a maximal set of logical consequences) approximation of an
OMS in a smaller signature or OMS language
Note Technically, an approximant is a uniform interpolant, see [31].

closed world assumption
presumption that what is not known to be true, is false

minimization,
circumscription
way of implementing the closed world assumption by restricting the models to those that are
minimal
Note See [33], [29].

4.5. Mappings Between OMSs

correspondence
relationship between an non-logical symbol e1 from an OMS O1 and an non-logical symbol e2

from an OMS O2, or between an non-logical symbol e1 from O1 and a term t2 formed from
non-logical symbols from O2

22
Note: this is about coverage only. Should we also care about safety?
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4. Terms and De�nitions

Note A correspondence is given as a quadruple (e1, R,

{
e2

t2

}
, c), where R denotes the

type of relationship that is asserted to hold between the two non-logical symbols/terms, and
0 ≤ c ≤ 1 is a con�dence value. R and c may be omitted: When R is omitted, it is implied
from the context (�equivalence� for alignments, and �equality� for logical OMS mappings)23 ; Note(23)
when c is omitted, it defaults to 1.

Note A con�dence value of 1 does not imply logical equivalence (cf. [27] for a worked-out
example).

OMS mapping ,
linkOMSs24 Note(24)

relationship between two OMSs, typically given as a set of correspondences

logical OMS mapping
OMS mapping that has a formal, logic-based semantics
Note Logical OMS mappings are given as sets of correspondences, which are required to
be signature morphisms.
Note Some speci�c kinds of logical OMS mappings will be introduced below.

interpretation,
view
logical OMS mapping that postulates a relation between two OMSs
Note An interpretation typically leads to proof obligations, i.e. one has to prove that
axioms of the source OMS of the mapping are theorems in the target OMS.
Note When an interpretation is given as a set of correspondences, these are given as
tuples, where the type of relationship is given by the speci�c kind of interpretation.

equivalence
logical OMS mapping ensuring that two OMSs share the same de�nable concepts
Note Two OMSs are equivalent if they have a common de�nitional extension. The OMSs
may be written in di�erent OMS languages.

interface signature
signature mediating between an OMS and a module of that OMS in the sense that it contains
those non-logical symbols that the sentences of the module and the sentences of the OMS have
in common
Note Adapted from [15]

23
Note: Q-AUT: For interpretations that is the only viable way, but for alignments? Is there any reasonable
“implied default”, or should we let R default to something like owl:sameAs?

24
Note: Q-ALL: Is this the correct way of stating that I mean “the term link, when used in the context of
ontologies”?
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4. Terms and De�nitions

module relation
logical OMS mapping stating that one OMS is a module of the other one.

import
logical OMS mapping between two OMSs such that one OMS behaves as if it were included
into the other
Note Semantically, an import of O2 into O1 is equivalent to the verbatim inclusion of O2

in place of the import declaration
Note The purpose of O2 importing O1 is to make non-logical symbols and sentences of
O1 available in O2.
Note Importing O1 into O2 turns O2 into an extension of O1.
Note An owl:import in OWL is an import.

renaming
assignment of new names to some non-logical symbols of an OMS
Note A renaming results in a logical OMS mapping between the original and the renamed
OMS.

reduction
logical OMS mapping reducing an OMS to a smaller signature

alignment
�exible, relational OMS mapping that does not always have a formal, logic-based semantics

matching
algorithmic procedure that generates an alignment for two given OMSs
Note For both matching and alignment, see [9, 25].

union
aggregation of several OMSs to a new OMS, without any renaming

combination
aggregation of several OMSs along a diagram of OMS mappings to a new OMS where some
of the non-logical symbols of the involved OMSs can be renamed into the same symbol
Example Consider an ontology involving a concept Person, and another one involving
Human being, and an alignment that relates these to concepts. In the combination of the
ontologies along the alignment, there is only one concept, representing both Person and
Human being.

diagram
graph of OMSs and OMS mappings showing how the OMS are interlinked

17



4. Terms and De�nitions

sharing
property of OMS symbols being mapped to the same symbol when computing a combination
of a diagram
Note Sharing is always relative to a given diagram that relates di�erent OMS. That is, two
given OMS symbols can share w.r.t. one diagram, and not share w.r.t. some other diagram.

4.6. Features of OMS Languages

OMS language translation
mapping from constructs in the source OMS language to their equivalents in the target OMS
language

Note An OMS language translation shall satisfy the property that the result of a trans-
lation is a well-formed text in the target language.

sublanguage
syntactically speci�ed subset of a given language, consisting of a subset of its terminal and
nonterminal symbols and grammar rules

language aspect
set of language constructs of a given language, not necessarily forming a sublanguage

logical language aspect
the (unique) language aspect of an OMS language that enables the expression of non-logical
symbols and sentences in a logical language

structuring language aspect
the (unique) language aspect of an OMS language that covers structured OMSs as well as the
relations of basic OMSs and structured OMSs to each other, including, but not limited to
imports, OMS mappings, conservative extensions, and the handling of pre�xes for CURIEs

annotation language aspect
the (unique) language aspect of an OMS language that enables the expression of comments
and annotations

profile
(syntactic) sublanguage of an OMS language interpreting according to a particular logic that
targets speci�c applications or reasoning methods
Example Pro�les of OWL 2 include OWL 2 EL, OWL 2 QL, OWL 2 RL, OWL 2 DL, and
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4. Terms and De�nitions

OWL 2 Full.
Note Pro�les typically correspond to sublogics.
Note Pro�les can have di�erent logics, even with completely di�erent semantics, e.g. OWL
2 DL versus OWL 2 Full.
Note The logic needs to support the language.

4.7. OMS Language Serializations

serialization
speci�c syntactic encoding of a given OMS language
Note Serializations serve as standard formats for exchanging OMSs between tools.
Example OWL uses the term �serialization�; the following are standard OWL serializa-
tions: OWL functional-style syntax, OWL/XML, OWLManchester syntax, plus any standard
serialization of RDF (e.g. RDF/XML, Turtle, . . . ). However, RDF/XML is the only one tools
are required to implement.
Example Common Logic uses the term �dialect�; the following are standard Common Logic
dialects: Common Logic Interchange Format (CLIF), Conceptual Graph Interchange Format
(GCIF), eXtended Common Logic Markup Language (XCL).

document
result of serializing an OMS using a given serialization

standoff markup
way of providing annotations to subjects in external resources, without embedding them into
the original resource (here: OMS)

4.8. Logic

logic
speci�cation of valid reasoning that comprises signatures, sentences, models, and a satisfaction
relation between models and sentences
Note Most OMS languages have an underlying logic.
Example SROIQ(D) is the logic underlying OWL 2 DL.
Note See annex C for the organization of the relation between OMS languages and their
logics and serializations.

institution
metaframework mathematically formalising the notion of a logic
Note See clause 9 for a formal de�nition.

19



4. Terms and De�nitions

logic translation
mapping of a source logic into a target logic (mapping signatures, sentences and models) that
keeps or encodes the logical content of OMSs

logic reduction
mapping of a source logic onto a (usually less expressive) target logic (mapping signatures,
sentences and models) that simply forgets those parts of the logical structure not �tting the
target logic

logic approximation
mapping of a source logic onto a (usually less expressive) target logic that tries to approximate
the OMSs expressed in the source logic with means of the expressivity of the target logic
Note A unique maximal approximation need not exist.

sublogic
a logic that is a syntactic restriction of another logic, inheriting its semnatics

heterogeneous OMS
OMS whose parts are supported by di�erent logics
Example

25 Note(25)

4.9. Interoperability
26 Note(26)
27

Note(27)
28

Note(28)
25
Note: todo. Maybe take it from section 7?

26
Note: TODO: possibly define some notion of “interoperability” that is tailored to this OMG Specification.
At least we need to be able to speak about overall consistency, alignments, etc.

27
Note: FYI: Definitions in earlier drafts were not quite helpful:
• OMS integration := “combination of different OMSs into a coherent whole, via alignments”
•OMS interoperability := “relation among OMSs (via OMS alignments) with the goal of using them jointly
in an application scenario”
AENOR commented on the latter: “The definition of this term needs some revision and more precision
in the document as for the real criteria that shall be applied to evaluate the degree of interoperability
between OMSs.”

28
Note: Frank Farance cited the following from ISO/IEC 2381-1 Information Technology Vocabulary –
Part 1: Fundamental Terms:
01.01.47
interoperability
The capability to communicate, execute programs, or transfer data among various functional units in a
manner that requires the user to have little or no knowledge of the unique characteristics of those units.
01.01.40
functional unit
An entity of hardware or software, or both, capable of accomplishing a specified purpose.
... and the following from the FDIS 20944-1 Information technology – Metadata Registries Interoper-
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4. Terms and De�nitions

logically interoperable
property of structured OMSs, which may be written in di�erent OMS languages 29based Note(29)
on di�erent logics, of being usable jointly in a coherent way (via suitable OMS language
translations), such that the notions of their overall consistency and logical entailment have a
precise logical semantics
Note TODO Michael: explain the relationship to other notions of interoperability (from
existing standards)

4.10. Distributed OMSs and the Distributed Ontology,
Modeling and Specification Language

distributed OMS,
hyperontology
collection of OMSs, possibly written in di�erent OMS languages, linked by OMS mappings

distributed ontology, modeling and specification language,
DOL
language for formalizing distributed OMSs, whose syntax and semantics are speci�ed in this
OMG Speci�cation

Note When viewed as an OMS language, DOL has OMSs as its non-logical symbols, and
OMS mappings as its sentences.

ability and Bindings (MDR-IB)– Part 1: Framework, common vocabulary, and common provisions for
conformance
3.21.12.4
data interoperability
interoperability concerning the creation, meaning, computation, use, transfer, and exchange of data
3.21.12.5
metadata interoperability
interoperability concerning the creation, meaning, computation, use, transfer, and exchange of descrip-
tive data

29
Note: TODO: phrase this more precisely, based on the previously introduced terms
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5. Symbols
30 Note(30)
As listed below, these symbols and abbreviations are generally for the main clauses of the

OMG Speci�cation. Some annexes may introduce their own symbols and abbreviations which
will be grouped together within that annex.

CASL Common Algebraic Speci�cation Language, speci�ed by the Common Frame-
work Initiative

CGIF Conceptual Graph Interchange Format
CL Common Logic
CLIF Common Logic Interchange Format
CURIE Compact URI expression
DDL Distributed description logic
DOL Distributed Ontology, Modeling and Speci�cation Language
EBNF Extended Backus-Naur Form
E-
connections

a modular ontology language (closely related to DDL)

F-logic frame logic, an object-oriented ontology language
IRI Internationalized Resource Identi�er
OWL 2 Web Ontology Language (W3C), version 2: family of knowledge representation

languages for authoring ontologies
OWL 2 DL description logic pro�le of OWL 2
OWL 2 EL a sub-Boolean pro�le of OWL 2 (used often e.g. in medical ontologies)
OWL 2 Full the language that is determined by RDF graphs being interpreted using the

OWL 2 RDF-Based Semantics [18]
OWL 2 QL pro�le of OWL 2 designed to support fast query answering over large amounts

of data
OWL 2 RL fragment of OWL 2 designed to support rule-based reasoning
OWL 2 XML XML-based serialization of the OWL 2 language
P-DL Package-based description logic
RDF Resource Description Framework, a graph data model
RDFa a set of XML attributes for embedding RDF graphs into XML documents
RDF/XML an XML serialization of the RDF data model
RIF Rule Interchange Format
UML Uni�ed Modeling Language
URI Uniform Resource Identi�er
URL Uniform Resource Locator
W3C World Wide Web Consortium
XML eXtensible Markup Language

30
Note: add OMG stuff
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6. Additional Information
31 32 Note(31)

Note(32)An ontology is a formal description of the concepts and relationships that are of interest
to an agent or a community of agents. Today, ontologies are applied in eBusiness, eHealth,
eGovernment, eInclusion, eLearning, smart environments, ambient assisted living (AAL),
and virtually all other information-rich endeavours. Ontologies have been used initially and
principally for data and database integration through providing a common representation
of the subject domain onto which the data sources can be mapped meaningfully. Over the
years, the purpose has broadened beyond data and services interoperability to include a
wide range of tasks and ontologies are used in information systems at run-time, such as
being a component in in silico scienti�c work�ows, used for natural language processing, in
ontology-driven querying of digital libraries, user pro�ling in recommender systems, adaptive
e-Learning tools, and more.33 Note(33)
[This page is left intentionally blank.]

31
Note: have a look at ODM’s Additional Information

32
Note: this could be put in section 1 (if possible with OMG), or turned into informative notes, or deleted

33
Note: Terry Longstreth: Interoperability in this context seems to be mutual consistency? Fostering
Mutual Consistency among disjoint ontological formalisms (intensions) and their realisations (exten-
sions). TM: yes, but more than that: also interfacability, such that the joint use in a common application
scenario is enabled.
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7. Design overview
This clause is informative. Its purpose is to brie�y describe the the overall guiding principles
and constraints of DOL's syntax and semantics. We give an overview of the most important
and innovative language constructs of DOL. Details can be found in clause 8.
DOL gives interoperability a formal grounding and makes heterogeneous OMSs and services

based on them amenable to checking of coherence (e.g. consistency, conservativity, intended
consequences, and compliance). OMS languages are declarative languages for making onto-
logical distinctions formally precise. They are distinguished by the following features:

Logic Most commonly, OMS languages are based on a description logic or some other subset
of �rst order logic, but in some cases, also higher-order, modal, paraconsistent and
other logics are used.

Modularity means of structuring an OMS into reusable parts, reusing parts of other OMSs,
mapping imported symbols to those in the importing OMS, and asserting additional
properties about imported symbols.

Annotation means of attaching human-readable descriptions to OMS symbols, addressing
knowledge engineers and service developers, but also end users of OMS-based services.34 Note(34)

Whereas the �rst feature determines the expressivity of the language and the possibilities for
automated reasoning (decidability, tractability, etc.), the latter two intend to facilitate OMS
engineering as well as the engineering of OMS-based software.
Within the DOL framework, existing OMSs in conforming established languages such as

OWL or Common Logic remain as they are, acknowledging the wide tool support these lan-
guages enjoy. DOL enhances their modularity and annotation facilities to a superset of the
modularity and annotation facilities they provide themselves. DOL's modularity and anno-
tation constructs can either be embedded into existing OMSs as non-disruptive annotations,
or they can be provided as stando� markup, pointing to the OMSs they talk about; DOL
speci�es a syntax and semantics for both variants. DOL's modularity constructs are seman-
tically well-founded within a library of formal relationships between the logics underlying the
di�erent supported OMS languages.

7.1. Overview of DOL
DOL is a language enabling OMS interoperability. DOL is

free DOL is freely available for unrestricted use.

generally applicable DOL is neither be restricted to OMSs in a speci�c domain, nor to
foundational OMSs, nor to OMSs represented in a speci�c OMS language, nor to OMSs
stored in any speci�c repositories.

34
Note: TODO Christoph: reformulate. DOL enables the use of annotations
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7. Design overview

open DOL supports mapping, integrating, and annotating OMSs across arbitrary internet
locations. It makes use of existing open standards wherever suitable. The criteria for
extending DOL (see next item) are transparent and explicit.

extensible DOL provides a framework into which any existing, and, desirably, any future
OMS language can be plugged.

DOL is applicable to any OMS language that has a formal, logic-based semantics or a se-
mantics de�ned by translation to another OMS language with such a formal semantics. The
annotation framework of DOL is additionally be applicable to the non-logical constructs of
such languages. This OMG Speci�cation speci�es formal criteria for establishing the confor-
mance of an OMS language with DOL. Annexes establish the conformance of a number of
relevant OMS languages with DOL; a registry shall o�er the possibility to add further (also
non-standardized) languages:35 DOL provides syntactic constructs for structuring OMSs re- Note(35)
gardless of the logic their sentences are formalized in. DOL provides syntactic constructs for
DOL does provide its own constructs for expressing sentences. Instead, it inherits the logical
language aspects of conforming OMS languages. It is possible to literally include sentences
expressed in such OMS languages in a DOL OMS. DOL provides an initial set of built-in
approximation methods and module extraction selectors. Additionally, it provides a means
of referring to approximation methods and module extraction selectors de�ned externally of
this OMG Speci�cation.36 DOL provides an initial vocabulary for expressing relations in Note(36)
correspondences (as part of alignments between OMSs). Additionally, it provides a means of
reusing relation types de�ned externally of this OMG Speci�cation. DOL does not provide
an annotation vocabulary, i.e. it neither provides annotation properties nor datatypes to be
used with literal annotation objects. Instead, an informative annex recommends existing
annotation vocabularies for use with DOL. 37 In the interest of wide applicability and tool Note(37)
support, DOL supports multiple alternative serializations. In particular, is a text serializa-
tion targeting human readers and writers, as well as serializations optimized for machine
processability. The text serialization in particular o�ers a syntax for abbreviating identi-
�ers of resources within OMSs in a way that does not require authors to write down their full
global identi�ers. An OMS implemented in DOL can comprise parts formalized in any OMS
language; any serialization of DOL can literally include such parts, regardless of the OMS
language serialization they have been written in. 38 Additionally, an OMS implemented in Note(38)
DOL can refer to any external OMSs formalized in any OMS language, as long as they can be
identi�ed in a globally unique way. Existing OMSs in existing XML serializations (e.g. XCL)
or text serializations (e.g. OWL Manchester Syntax) validate as DOL OMSs with a minimum
amount of syntactic adaptation. Existing OMS �les/documents are usable in a DOL context
without the need for modi�cation.
DOL does not provide a new elementary OMS language, but provides a layer to be used on

top of existing elementary OMS languages which enables OMS engineers to formally express
mappings between OMSs written in di�erent languages and stored at di�erent Web locations.
The purpose of such distributed OMSs is enabling a greater extent of interoperability between
data and services in complex application settings.
The following features are essential to the design of this OMG Speci�cation:

35
Note: John Sowa: Make it modular with a simple core that can run efficiently on small systems, but
can grow indefinitely to support as much as anyone could desire.

36
Note: FYI: In practice we will use IRIs for that purpose.

37
Note: Q-ALL: We need to revise this following the agreement to drop the XML and RDF serializations.

38
Note: FYI: advanced namespacing is the solution that addresses this requirement
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7. Design overview

� DOL is a language covering OMS modularity, OMS heterogeneity, and OMS mapping.
In particular, it enables writing structured OMSs (thereby reusing existing OMSs),
OMSs involving di�erent languages, as well as complex mappings and relations between
OMSs.

� DOL is a declarative language with a formal semantics.

� DOL provides a superset of the modularization, Web awareness and annotation facilities
of a number of commonly used OMS languages, including OWL [OWL2], RDF [RDF],
Common Logic [ISO/IEC 24707:2007] and UML [UML].1

� DOL is an open, extensible standard that is not restricted to a �xed set of supported
OMS language but speci�es criteria for any existing or future OMS language to conform
with DOL.

� Existing OMSs in languages conforming with DOL remain as they are; they can be
enriched with DOL's modularity and annotation constructs in a non-disruptive way.

39 Note(39)

7.2. DOL enables expression of logically
heterogeneous OMSs and literal reuse of existing
OMSs.

DOL is a mechanism for expressing logically heterogeneous OSMs. It can be used to combine
sentences and structured OSMs expressed in di�erent conforming OSM languages and logics
into single documents or modules. With DOL, sentences or structured OSMs of previously
existing OSMs in conforming languages can be reused by literally including them into a DOL
OSM. A minimum of wrapping constructs and other annotations (e.g. for identifying the
language of a sentence ) are provided. 40 See the abstract syntax category Onto in clause 8. Note(40)

7.3. DOL includes provisions for expressing
mappings between OMSs.

DOL provides a syntax for expressing mappings between OMSs � logical OMS Mappings
as well as alignments. One use case illustrating both is sketched in Figure 7.1. This OMG
Speci�cation speci�es a set of logical OMS mapping types and a set of non-logical OMS
mapping types.
Logical OMS mappings supported by DOL include:

� imports (particularly including imports that lead to conservative extensions), see the
abstract syntax categories OntoRef and ExtensionOnto in clause 8.

� interpretations, see the abstract syntax category IntprDefn in clause 8.

1See clause ?? for details.
39
Note: reformulate this, see RFP

40
Note: TODO: Figure out what this feedback item from Michael Grüninger (?) means: say that there
should be a syntax for relationships btw. OMSs as well as a syntax for heterogeneous OMSs. (If you
write down an OMS, it might involve constructs that only exist in OWL)
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7. Design overview
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Figure 7.1.: Mapping between two OMSs formulated in di�erent OMS languages

� mappings between OMSs and their modules, see the abstract syntax category ModuleRelDefn
in clause 8.

DOL allows such links to express signature translations in such OMS mappings, see the
abstract syntax category SymbolMapItems in clause 8.
DOL need not be able to fully represent logical translations but is capable of referring to

them.
41 Note(41)
DOL can also be used to combine or merge OMSs along such OMS mappings, see the rule

for combination for the abstract syntax category Onto in clause 8.

7.4. DOL enables the representation of OMSs and
OMS mappings at different levels of detail

OMSs and OMS mappings expressed in DOL can be based on a number of implicit assump-
tions about which OMS language translation or which ontology matcher has been employed.
Depending on the OMS engineering work�ow or application setting, it can be useful to keep
these assumptions implicit or to make them explicit. DOL permits to leave such assumptions
implicit if desired. However, it also enables the user to capture these assumptions explicitly
as annotations to the OMS. This OMG Speci�cation speci�es a translation that expands any
DOL OMS with implicit assumptions into its explicit counterpart.
The following list covers the possible cases where DOL provides a choice between repre-

senting information implicitly or explicitly:

default OMS language translations A heterogeneous OMS can import several (structured)
OMSs expressed in di�erent conforming logics, for which suitable translations have been

41
Note: Q-AUT: We had this comment here; what does it mean? “DOL only maps symbols to expres-
sions”
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7. Design overview

de�ned in the logic graph provided in annex G or in an extension to it that has been
provided when establishing the conformance of some other logic with DOL. Determining
the semantics of the heterogeneous OMS requires a translation into a common target
language to be applied (cf. clause ??). This translation is determined via a lookup in
the transitive closure of the logic graph. Depending on the reasoners available in the
given application setting, it can, however, be necessary to employ a di�erent translation.
Authors can express which one to employ. In a multi-step translation, it is possible to
implicitly apply as many default translations as possible, and to concentrate on making
explicit only those translations that deviate from the default.42 Note(42)

different matching algorithms OMS alignments, which DOL is able to express, may have
been obtained by running di�erent OMS matching algorithms. If, in a given OMS
engineering work�ow, the information on which algorithm has been applied is clear
from the context, it is possible to omit it in the alignment expressed in DOL. Otherwise,
e.g. if the next person working on the OMS requires that information, it is possible to
make it explicit.43 Note(43)

44 Note(44)

7.5. DOL provides a mechanism for rich annotation
and documentation of OMSs.

45 DOL supports annotations in the full generality speci�ed in clause 4.3. The DOL serial- Note(45)
izations further support the �ne-grained embedding of annotations into OMSs.
The DOL serializations also supports the annotation of existing OMSs via non-intrusive

stando� markup, which points to the annotation subjects from external documentation �les
or from special embedded comments, extending the comment syntax of the respective OMS
language; for XML serializations of OMS languages, RDFa extensions are speci�ed, so that
DOL RDF can be embedded.
A list of RDF vocabularies for annotating OMSs is recommended as an annex to this OMG

Speci�cation.

42
Note: Q-AUT: Will this situation be the same for default approximations, or to we need to add an extra
item to the list?

43
Note: TM: the alignment itself should be there explicitly. right? But then the information about the
matching algorithm that has produced it is a mere annotation without semantics, isn’t it?
CL: I agree with you. OK, so we will replace this with approximation algorithms.

44
Note: TODO: ask Michael Grüninger for his mereology example in CL

45
Note: Q-ALL: I think that now that we have agreed on dumping the RDF and XML serializations of
DOL, this requirement can no longer be satisfied. Or maybe it can be satisfied in a trivial way (nonethe-
less requiring this section to be shortened): DOL provides the mechanism for identifying anything of
relevance in a distributed OMS, it will do so by IRIs, and with RDF there is an established mechanism
for annotating things identified by IRIs. Still I believe this requirement is an important selling point.
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8. DOL abstract syntax
46 Note(46)

8.1. Abstract syntax categories
DOL provides abstract syntax categories for47 Note(47)

� heterogeneous OMSs (which can be basic OMSs in some OMS language, or unions,
translations, minimizations, combinations, approximations of OMSs, among others)

� distributed OMSs (items in distributed OMSs are: OMS de�nitions, OMS mapping
de�nitions, and quali�cations choosing the logic, OMS language and/or serialization)

� identi�ers

� annotations

Additionally, the categories of the abstract syntaxes of any conforming OMS languages (cf.
clause 2.1) are also DOL abstract syntax categories.
The following subclauses, one per abstract syntax category, specify the abstract syntax of

DOL in EBNF ISO/IEC 14977:1996. Note that ISO EBNF lacks an operator for �at least one
repetition�. This OMG Speci�cation therefore adopts the following convention: Whenever
some sequence S is repeated at least once, we give it a non-terminal identi�er of its own
(RepeatedS = S { S } ;), or group it as in LongerExpression = Foo Bar ( S {
S } ) ;.

8.2. Distributed OMSs
A distributed OMS consists of at least one (possibly heterogeneous) OMS, plus, option-
ally, mappings between its participating (heterogeneous) OMSs. More speci�cally, a dis-
tributed OMS consists of a name, followed by a list of DistOntoItems. A DistOntoItem
is either an OMS de�nition (OntoDefn), or a mapping between OMSs (LinkDefn), or a
Qualification selecting a speci�c OMS language, logic and/or syntax that is used to
interpret the subsequent DistOntoItems. Alternatively, a distributed OMS can also be
the verbatim inclusion of an OMS written in an OMS language that conforms with DOL
(OntoInConformingLanguage; cf. 2.1).

DistOnto = [ PrefixMap ] , DistOntoDefn
| OntoInConformingLanguage ;

DistOntoDefn = ’dist-onto-defn’ , DistOntoName , { DistOntoItem } ;

46
Note: TODO: split into two clauses: one for abstract syntax, one for semantics. TM: done

47
Note: Q-AUT: In the previous draft we had more fine-grained categories: OMS languages, OMS lan-
guage translation, mappings between OMSs, OMS combination (are these the colimits that we now call
“combinations”?)
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8. DOL abstract syntax

OntoInConformingLanguage = ? language and serialization specific ? ;
DistOntoItem = OntoDefn | MappingDefn | Qualification ;
Qualification = LanguageQual | LogicQual | SyntaxQual ;
LanguageQual = ’lang-select’ , LanguageRef ;
LogicQual = ’logic-select’ , LogicRef ;
SyntaxQual = ’syntax-select’ , SyntaxRef ;
DistOntoName = IRI ;

48 Note(48)
At the beginning of a distributed OMS, one can declare a PrefixMap for abbreviating

long IRIs; see clause 8.5 for details.

8.3. Heterogeneous OMSs
An OMS (Onto) can be one of the following:

� a basic OMS BasicOnto written inline, in a conforming serialization of a conforming
OMS language1,

� a translation of an OMS into a di�erent signature or OMS language,

� a reduction of an OMS to a smaller signature and/or less expressive logic (that is, some
non-logical symbols are hidden, but the semantic e�ect of sentences involving these is
kept),

� an approximation of an OMS, normally in a sublogic, using a given approximation
method (with the e�ect that sentences not expressible in the sublogic are weakened or
removed),

� a union of OMSs,

� an extension of an OMS by other ones, it can be optionally named and/or marked as
conservative, monomorphic, de�nitional or implied,

� a module extracted from an OMS, using a restriction signature,

� a reference to an OMS existing on the Web,

� an OMS quali�ed with the OMS language that is used to express it,

� a combination of OMSs (technically, this is a colimit, see [41]),

� a minimization of an OMS, forcing the subsequently declared non-logical symbols to
be interpreted in a minimal way, while the non-logical symbols declared so far are
�xed (alternatively, the non-logical symbols to be minimized and to be varied can be
explicitly declared).

48
Note: FYI: Things changed from HetCASL:
• logic-select now mandatory (no default logic) and tree-scoped
• download-items (encourage linked data best practices instead)
• item-name-map (to be replaced by namespaces??)
• lib-version (to be replaced by metadata annotations, e.g. OMV)
• indirect-mapping (will always use full IRIs, and abbreviate them by syntactic namespaces)

1In this place, any OMS in a conforming serialization of a conforming OMS language is permitted.
However, DOL's module sublanguage should be given preference over the module sublanguage of
the respective conforming OMS language; e.g. DOL's extension construct should be preferred over
OWL's import construct.
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8. DOL abstract syntax

BasicOnto = OntoInConformingLanguage ;
MinimizableOnto = BasicOnto

| ’onto-ref’ , OntoRef , [ ImportName ] ;
ExtendingOnto = MinimizableOnto

| ’minimize’ , MinimizableOnto ;
Onto = ExtendingOnto

| ’minimize-symbols’ , Onto , CircMin , CircVars
| ’translation’ , Onto , Translation
| ’reduction’ , Onto , Reduction
| ’module-extract’ , Onto , Extraction
| ’approximation’ , Onto , Approximation
| ’union’ , Onto , [ ConsStrength ] , Onto
| ’extension’ , Onto , ExtensionOnto
| ’qual-onto’ , { Qualification } , Onto
| ’bridge’ , Onto, { Translation } , Onto
| ’combination’ , CombinedElements , ExcludeExtensions ;

CircMin = Symbol , { Symbol } ;
CircVars = { Symbol } ;

Translation = ’renaming’ , { LogicTranslation } , [ SymbolMapItems ] ;
LogicTranslation = ’logic-translation’ , OntoLangTrans ;

Reduction = ’hidden’ , { LogicReduction } , [ SymbolItems ]
| ’revealed’ , [ SymbolMapItems ] ;

LogicReduction = ’logic-reduction’ , OntoLangTrans ;

SymbolItems = ’symbol-items’ , ( Symbol , { Symbol } ) ;
SymbolMapItems = ’symbol-map-items’ , ( SymbolOrMap , { SymbolOrMap } ) ;49Note(49)

Extraction = ’extraction’, Conservative, InterfaceSignature, ExtractionMethod ;

Approximation = ’approximation’ , ApproxMethod ;50 Note(50)

ExtensionOnto = [ ConsStrength ] , [ ExtensionName ] , ExtendingOnto ;

ConsStrength = Conservative | ’monomorphic’
| ’weak-definitional’ | ’definitional’ | ’implied’ ;

Conservative = ’consequence-conservative’ | ’model-conservative’ ;

InterfaceSignature = ’interface-signature’ , SymbolItems ;

49
Note: TODO: say that this default may be overridden by specific logics, such as CASL

50
Note: TODO: can we identify Approximation with ApproxMethod?
CL: At least in our concrete syntax it’s easier to keep them separate; please have a look at the corre-
sponding concrete syntax (and revise that if necessary).
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CombinedElements = OntoOrMapping [ Id ] 51 Ref { OntoOrMappingRef } ;Note(51)
ExcludeExtensions = ’exclude-imports’ , { ExtensionRef } ;

ImportName = IRI ;
ExtensionName = IRI ;

An OMS de�nition OntoDefn names an OMS. It can be optionally marked as consistent,
using ConsStrength.2. An SymbolItems, used in an OMS Reduction, is a list of non-
logical symbols that are to be hidden. A LogicReduction denotes a logic reduction to
a less expressive OMS language. A SymbolMapItems, used in OMS Translations, maps
symbols to symbols52 , or a logic translation. An OMS language translation OntoLangTrans Note(52)
or ApproxMethod can be either speci�ed by its name (optionally quali�ed with source and
target OMS language), or be inferred as the default translation or approximation method
between a given source and target (where even the source may be omitted; it is then inferred
as the OMS language of the current OMS).

OntoDefn = ’onto-defn’ , OntoName , [ ConsStrength ] , Onto ;

Symbol = IRI ;
SymbolMap = ’symbol-map’ , Symbol , Symbol ;
SymbolOrMap = Symbol | SymbolMap ;
Term = ? an expression specific to a basic OMS language ? ;

OntoName = IRI ;

OntoRef = IRI ;
OntoOrMappingRef = IRI ;
ExtensionRef = IRI ;

LoLaRef = LanguageRef | LogicRef ;

LanguageRef = IRI ;
LogicRef = IRI ;
SyntaxRef = IRI ;

OntoLangTrans = ’named-trans’ , OntoLangTransRef
| ’qual-trans’ , OntoLangTransRef , LoLaRef , LoLaRef
| ’anonymous-trans’ , LoLaRef , LoLaRef
| ’default-trans’ , LoLaRef53 ; Note(53)

OntoLangTransRef = IRI ;

51
Note: or should we leave OntoOrIntprRef? Does combination have a semantics for (informal)
alignments? TM: indeed yes, at least if we ignore confidence values (or all are equal to 1). Then, an
(informal) alignment leads to a span of logical mappings, and this can be used in the combination. This
feature will greatly increase the use of combinations. I will work this out in the semantics.

2More precisely, ’consequence-conservative’ here requires the OMS to have a non-trivial set
of logical consequences, while ’model-conservative’ requires its satis�ability.

52
Note: FYI: On 2012-07-18 we decided not to specify lambda-style symbol-to-term mappings for now.
Would be convenient, but specifying its semantics in an OMS language independent way would re-
quire additional institution infrastructure – and the same effect can be achieved by auxiliary definitional
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8. DOL abstract syntax

ApproxMethod = ’named-approx’, ApproxMethodRef
| ’qual-approx’ , ApproxMethodRef , LoLaRef
| ’default-approx’ , LoLaRef54 ; Note(54)

ApproxMethodRef = IRI ;

ExtractionMethod = IRI ;

8.4. OMS Mappings
A OMS mapping provides a connection between two OMSs. A OMS mapping de�nition is
the de�nition of either a named interpretation (IntprDefn), a named declaration of the
relation between a module of an OMS and the whole OMS (ModuleRelDefn), or a named
alignment (AlignDefn). The SymbolMapItems in an interpretation always must lead to a
signature morphism; a proof obligation expressing that the (translated) source OMS logically
follows from the target OMS is generated. In contrast to this, an alignment just provides a
connection between two OMSs without logical semantics, using a set of Correspondences.
Each correspondence may map some OMS non-logical symbol to another one (possibly given
by a term) and an optional con�dence value. Moreover, the relation between the two non-
logical symbols can be explicitly speci�ed (like being equal, or only being subsumed). A
ModuleRelDefn declares that a certain OMS actually is a module of some other OMS with
respect to the InterfaceSignature.

MappingDefn = IntprDefn | EquivDefn | ModuleRelDefn | AlignDefn ;

IntprDefn = ’intpr-defn’ , IntprName , [ Conservative ] , IntprType ,
{ LogicTranslation } , [ SymbolMapItems

] ;
IntprName = IRI ;
IntprType = ’intpr-type’ , Onto , Onto ;

EquivDefn = ’equiv-defn’ , EquivName , EquivType , Onto ;
EquivName = IRI ;
EquivType = ’equiv-type’ , Onto , Onto ;

ModuleRelDefn = ’module-defn’ , ModuleName , [ Conservative ] , ModuleType ,
InterfaceSignature ;

ModuleName = IRI ;
ModuleType = ’module-type’ , Onto , Onto ;

extensions, cf. Colore (so promote this, informatively, as a “best practice”?)
53
Note: TODO: need to figure out which of these we actually want to keep. named-trans and default-trans
are sufficient, because the other ones contain redundant information that is only stated once more for
clarity. (Source and target logic of qual-trans are clear from inspecting the translation, and the source
logic of anonymous-trans is clear from the OMS that is translated.)

54
Note: TODO: These alternatives are coherent with what we discussed about the approximation syntax
with defaults, but they are different from OntoLangTrans. But see the comment for OntoLangTrans
above.
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AlignDefn = ’align-defn’ , AlignName , [ AlignCard ] , AlignType3

{ Correspondence } ;
AlignName = IRI ;
AlignCards = AlignCardForward , AlignCardBackward55 ; Note(55)
AlignCardForward = ’align-card-forward’ , AlignCard ;
AlignCardBackward = ’align-card-backward’ , AlignCard ;
AlignCard = ’injective-and-total’

| ’injective’
| ’total’
| ’neither-injective-nor-total’ ;

AlignType = ’align-type’ , Onto , Onto ;

Correspondence = CorrespondenceBlock
| SingleCorrespondence
| ’default-correspondence’56 ; Note(56)

CorrespondenceBlock = ’correspondence-block’ , [ RelationRef ] , [ Confidence ]57Note(57)
{ Correspondence } ;

SingleCorrespondence = ’correspondence’ , SymbolRef , [ RelationRef ] , [ Confidence ] ,
TermOrSymbolRef , [ CorrespondenceID ]58Note(58)

;
CorrespondenceID = IRI ;
SymbolRef = IRI ;
TermOrSymbolRef = Term | SymbolRef ;
RelationRef = ’subsumes’ | ’is-subsumed’ | ’equivalent’ | ’incompatible’

| ’has-instance’ | ’instance-of’ | ’default-relation’59Note(59)
| IRI ;

Confidence = Double60 ; Note(60)
Double = ? a number ∈ [0, 1] ? ;

61 Note(61)
A symbol map in an interpretation is required to cover all non-logical symbols of the

source OMS; the semantics speci�cation in clause 9 makes this assumption4. Applications

3Note that this grammar uses �type� as in �the type of a function�, whereas the Alignment API
uses �type� for the totality/injectivity of the relation/function. For the latter, this grammar uses
�cardinality�.

55
Note: TODO: mention that the default is twice “injective and total”

56
Note: TODO: add concrete syntax, plus explanation: applies current default correspondence to all
non-logical symbols with the same local names, using the “same local name” algorithm presented
elsewhere

57
Note: TODO: How do we say that at least one of these should be given?

58
Note: TODO: concrete syntax e.g. a = x, b my:similarTo y %(correspond-b-to-y)%, c my:similarTo 0.75
z

59
Note: TODO: say that, unless a different default is specified in a surrounding CorrespondenceBlock,
the default is ’equivalent’

60
Note: TODO: check if Double really makes sense for implementations, maybe we’d like to compare
confidence values for equality

61
Note: TODO: cite Alignment API for RelationRef; recommend linked data for RelationRef =
IRI, or recommend registry?

4Mapping a non-logical symbol twice is an error. Mapping two source non-logical symbols to the
same target non-logical symbol is legal, this then is a non-injective OMS mapping.
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8. DOL abstract syntax

shall implicitly map those non-logical symbols of the source OMS, for which an explicit
mapping is not given, to non-logical symbols of the same (local) name in the target OMS,
wherever this is uniquely de�ned � in detail:

Require: Os, Ot are OMSs
Require: M ⊆ Σ(Os) × Σ(Ot) maps non-logical symbols (i.e. elements of the signature) of
Os to non-logical symbols of Ot
for all es ∈ Σ(Os) not covered by M do
ns ← localname(es)
Nt ← {localname(e)|e ∈ Σ(Ot)}
if Nt = {et} then {i.e. if there is a unique target}
M ←M ∪ {(es, et)}

end if
end for

Ensure: M completely covers Σ(Os)

The local name of a non-logical symbol is determined as follows5:

Require: e is a non-logical symbol (identi�ed by an IRI; cf. clause 8.5)
if e has a fragment f then {production ifragment in IETF/RFC 3987:2005}
return f

else
n ← the longest su�x of e that matches the Nmtoken production of XML W3C/TR
REC-xml:2008
return n

end if
62 Note(62)

8.5. Identifiers
This section speci�es the abstract syntax of identi�ers of DOL OMSs and their elements.

8.5.1. IRIs
In accordance with best practices for publishing OMSs on the Web, identi�ers of OMSs and
their elements should not just serve as names, but also as locators, which, when dereferenced,
give access to a concrete representation of an OMS or one of its elements. (For the speci�c
case of RDFS and OWL OMSs, these best practices are documented in [20]. The latter is
a specialization of the linked data principles, which apply to any machine-processable data
published on the Web [28].) It is recommended that publicly accessible DOL OMSs be
published as linked data.

63Therefore, in order to impose fewer conformance requirements on applications, DOL Note(63)
commits to using IRIs for identi�cation IETF/RFC 3987:2005. It is recommended that

5In practice, this can often have the e�ect of undoing an IRI abbreviation mechanism that was
used when writing the respective OMSs (cf. clause 8.5). In general, however, functions that turn
abbreviations into IRIs are not invertible. For this reason, the implicit mapping of non-logical
symbols is speci�ed independently from IRI abbreviation mechanisms possibly employed in the
OMSs.

62
Note: some text that was left over here, but I don’t recall what we meant by it: recommendations for
dealing with OMS language dialects

63
Note: Q-AUT: Does this motivation/justification sound reasonable to you?
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8. DOL abstract syntax

distributed OMSs use IRIs that translate to URLs when applying the algorithm for map-
ping IRIs to URIs speci�ed in IETF/RFC 3987:2005, Section 3.1. DOL descriptions of any
element of a distributed OMS that is identi�ed by a certain IRI should be located at the
corresponding URL, so that agents can locate them. As IRIs are speci�ed with a concrete
syntax in IETF/RFC 3987:2005, DOL adopts the latter into its abstract syntax as well as all
of its concrete syntaxes (serializations)64 . Note(64)
In accordance with semantic web best practices such as the OWL Manchester Syntax [17],

this OMG Speci�cation does not allow relative IRIs, and does not o�er a mechanism for
de�ning a base IRI, against which relative IRIs could be resolved.
Concerning these languages, note that they allow arbitrary IRIs in principle, but in practice

they strongly recommend using IRIs consisting of two components [20]:

namespace an IRI that identi�es the complete OMS (a basic OMS in DOL terminology),
usually ending with # or /

local name a name that identi�es a non-logical symbol within an OMS

IRI = ’full-iri’ , FullIRI | ’curie’ , CURIE6 ;
FullIRI = ? as defined by the IRI production in IETF/RFC 3987:2005 ? ;

8.5.2. Abbreviating IRIs using CURIEs
As IRIs tend to be long, and as syntactic mechanisms for abbreviating them have been stan-
dardized, it is recommended that applications employ such mechanisms and support ex-
panding abbreviative notations into full IRIs. For specifying the semantics of DOL, this OMG
Speci�cation assumes full IRIs everywhere, but the DOL abstract syntax adopts CURIEs
(compact URI expressions) as an abbreviation mechanism, as it is the most �exible one that
has been standardized to date.
The CURIE abbreviation mechanism works by binding pre�xes to IRIs. A CURIE consists

of a pre�x, which may be empty, and a reference. If there is an in-scope binding for the pre�x,
the CURIE is valid and expands into a full IRI, which is created by concatenating the IRI
bound to the pre�x and the reference.
DOL adopts the CURIE speci�cation of RDFa Core 1.1 W3C/TR REC-rdfa-core-20120607,

Section 6 with the following changes:

� DOL does not support the declaration of a �default pre�x� mapping 65 (covering Note(65)
CURIEs such as :name).

� DOL does support the declaration of a �no pre�x� mapping (covering CURIEs such as
name).

� DOL does not make use of the safe_curie production.

� DOL does not allow binding a relative IRI to a pre�x.

� Concrete syntaxes of DOL are encouraged but not required to support CURIEs.7

64
Note: Q-ALL: I meant to say: for IRIs, the abstract syntax is the same as the concrete syntax.
6speci�ed below in clause 8.5.2
65
Note: Q-AUT: Are such explanatory notes OK here?
7This is a concession to having an RDF-based concrete syntax among the normative concrete syn-
taxes. RDFa is the only standardized RDF serialization to support CURIEs so far. Other seri-
alizations, such as RDF/XML or Turtle, support a subset of the CURIE syntax, whereas some
machine-oriented serializations, including N-Triples, only support full IRIs.
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CURIEs can occur in any place where IRIs are allowed, as stated in clause 8.5.1. Informa-
tively, we can restate the CURIE grammar supported by DOL as follows:

CURIE = [ Prefix ] , Reference ;
Prefix = NCName , ’:’ (* see �NCName� in W3C/TR REC-xml-names:2009, Sec-
tion 3 *) ;
Reference = Path , [ Query ] , [ Fragment ] ;
Path = ipath-absolute | ipath-rootless | ipath-empty

(* as de�ned in IETF/RFC 3987 *) ;
Query = ’?’ , iquery (* as de�ned in IETF/RFC 3987 *) ;
Fragment = ’#’ , ifragment (* as de�ned in IETF/RFC 3987 *) ;

Pre�x mappings can be de�ned at the beginning of a distributed OMS (speci�ed in clause 8.2;
these apply to all parts of the distributed OMS, including basic OMSs as clari�ed in clause 8.5.3).
Their syntax is:

PrefixMap = ’prefix-map’ , { PrefixBinding } ;
PrefixBinding = ’prefix-binding’ , BoundPrefix , IRIBoundToPrefix ;
BoundPrefix = ’bound-prefix’ , [ Prefix ] ;
IRIBoundToPrefix = ’full-iri’ , FullIRI ;

Bindings in a pre�x map are evaluated from left to right. Authors should not bind the
same pre�x twice, but if they do, the later binding wins.

8.5.3. Mapping identifiers in basic OMSs to IRIs
While DOL uses IRIs as identi�ers throughout, basic OMS languages do not necessarily do;
for example:

� OWL W3C/TR REC-owl2-syntax:2009, Section 5.5 does use IRIs.

� Common Logic ISO/IEC 24707:2007 supports them but does not enforce their use.

� F-logic [26] does not use them at all.

However, DOL OMS mappings as well as 66 certain operations on OMSs require making Note(66)
unambiguous references to non-logical symbols of basic OMSs (SymbolRef). Therefore,
DOL provides a function that maps global identi�ers used within basic OMSs to IRIs. This
mapping a�ects all non-logical symbol identi�ers (such as class names in an OWL ontology),
but not locally-scoped identi�ers such as bound variables in Common Logic ontologies. DOL
reuses the CURIE mechanism for abbreviating IRIs for this purpose (cf. clause 8.5.2).
CURIEs that have a pre�x may not be acceptable identi�ers in every serialization of a

basic OMS language, as the standard CURIE separator character, the colon (:), may not be
allowed in identi�ers. 67 Therefore, the declaration of DOL-conformance of the respective Note(67)
serialization (cf. clause 2.2) may de�ne an alternative CURIE separator character, or it may
forbid the use of pre�xed CURIEs altogether.
The IRI of a non-logical symbol identi�er in a basic OMS O is determined by the following

function:

Require: D is a distributed OMS

66
Note: TODO: maybe clarify which ones, by checking the grammar for all occurrences of SymbolRef

67
Note: Q-ALL: I recall that in the 2012-04-18 teleconference we agreed on this – but does it really make
sense? Are there any relevant OMS language serializations that do not allow : in identifiers (or that do
allow it theoretically but discourage it in practice) but allow some other non-letter character?
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Require: O is a basic OMS in serialization S
Require: id is the identi�er in question, identifying a symbol in O according to the speci�-
cation of S

Ensure: i is an IRI
if id represents a full IRI according to the speci�cation of S then
i← id

else
{�rst construct a pattern cp for CURIEs in S, then match id against that pattern}
if S de�nes an alternative CURIE separator character cs then

sep ← cs
else if S forbids pre�xed CURIEs then

sep ← unde�ned
else

sep ← : {the standard CURIE separator character}
end if
{The following statements construct a modi�ed EBNF grammar of CURIEs; see ISO/IEC
14977:1996 for EBNF, and clause 8.5.2 for the original grammar of CURIEs.}
if sep is de�ned then

cp ← [NCName, sep],Reference
else

cp ← Reference
end if
if id matches the pattern cp, where ref matches Reference then
if the match succeeded with a non-empty NCName pn then
p← concat(pn, :)

else
p← no pre�x

end if
if O binds p to an IRI pi according to the speci�cation of S then

nsi ← pi
else
P ← the innermost pre�x map in D, starting from the place of O inside D, and
going up the abstract syntax tree towards the root of D
while P is de�ned do
if P binds p to an IRI pi then

nsi ← pi
break out of the while loop

end if
P ← the next pre�x map in D, starting from the place of the current P inside
D, and going up the abstract syntax tree towards the root of D

end while
return an error

end if
i← concat(nsi , ref )

else
return an error

end if
end if
return i
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This mechanism applies to basic OMSs given inline in a distributed OMS document
(BasicOnto), not to OMSs in external documents (OntoInConformingLanguage); the
latter shall be self-contained.
While CURIEs used for identifying parts of a distributed OMS (cf. clause 8.5.2) are merely

syntactic sugar, the pre�x map for a basic OMS is essential to determining the semantics of
the basic OMS within the distributed OMS. Therefore, any DOL serialization shall provide
constructs for expressing such pre�x maps, even if the serialization does not support pre�x
maps otherwise.

68 Note(68)

8.6. DOL Serializations
Say how existing OMSs in existing serializations have to be adapted/wrapped (or ideally: not
adapted at all!) in order to become valid OMSs in some DOL serialization.6970 Note(69)

Note(70)

8.7. Annotations
71 72 Annotations always have a subject, which is identi�ed by an IRI. Where the given Note(71)

Note(72)OMS language does not provide a way of assigning IRIs to a desired subject of an annotation
(e.g. if one wants to annotate an import in OWL), a distributed OMS may employ RDF
annotations that use XPointer or IETF/RFC 5147 as means of non-destructively referencing
pieces of XML or text by URI.8

68
Note: TODO: somewhere we need to mention semantic annotations to embedded fragments in con-
forming OMS languages, e.g. %implied

69
Note: TODO: Essential points are:– need to be able to say: “the file at URL U is in OWL 2 Manchester
syntax”– maybe use packaging/wrapping format– compare MIME types, HTTP content negotiation (but
don’t go too deep into communication protocols)

70
Note: Reply: Maybe we can implement something like the Linux command “file”?

71
Note: this subclause will be moved to annex M

72
Note: TODO: Properly integrate this text from our LaRC 2011 paper
8We intend to utilise the extensibility of the XPointer framework by developing additional XPointer
schemes, e.g. for pointing to subterms of Common Logic sentences.
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9. DOL semantics
We pursue a threefold approach of assigning a semantics to the DOL abstract syntax:

Direct Model-Theoretic Semantics On the level of basic OMSs, this semantics reuses the
existing semantics of the involved logics, as well as translations between these logics.
The semantics of structured DOL OMSs and OMS mappings is speci�ed on top of this.

Translational Semantics The semantics of Common Logic is employed for all basic OMS
languages, taking advantage of the fact that Common Logic is a common translation
target for many OMS languages. In detail, the translational semantics �rst translates
the DOL abstract syntax of into the abstract syntax of DOL(CL), where DOL(CL)
is the homogeneous restriction of DOL to distributed OMSs with all parts written in
Common Logic only. The latter is interpreted as in the case of the direct semantics,
with basic OMSs interpreted in terms of the existing Common Logic semantics.

Collapsed Semantics The collapsed semantics extends the translational semantics to a se-
mantics that is fully given speci�ed in Common Logic. It further translates the abstract
syntax DOL(CL) to Common Logic, and then reuses the semantics of Common Logic,
without employing a separate semantics for the DOL language. Here, the meta and
object levels are collapsed into Common Logic, but may still be distinguished by a
closer look into the Common Logic theory.

The model-theoretic nature of the semantics ensures a better representation of the model
theory than a theory-level semantics would do. In particular, Theorem 13 of [36] ensures that
models classes of logical theories represented in Common Logic can be recovered through a
model translation. This is of particular importance when studying model-theoretic properties
like �nite model or tree model properties.
We now specify the theoretical foundations of the semantics of DOL.73 Since DOL involves Note(73)

heterogeneous OMSs, the semantics is parameterised over an arbitrary but �xed heterogeneous
logic environment. This notion is de�ned below, it corresponds to a graph of OMS languages
and OMS language translations. Below, also notions of institute and institute comorphism
are de�ned, which provide formalisations of the terms �logic�, resp. �logic translation�.
The notion of institute deliberately avoids the use of category theory in order to keep

the mathematical background simple. Most of the abstract syntax can be interpreted using
institutes, but not all of it. Some parts (namely symbol maps, combinations and the
construct monomorphic; these are marked in bold italics) of the abstract syntax need a
more sophisticated and more general category-theoretic foundation in terms of institutions
[[12]]. More speci�cally, the notion of institute needs to be replaced by that of institutional
logic [[34]], and analogously for comorphisms [[13]].
Details of the mapping of the abstract syntax into the semantic domains given by the

heterogeneous logic environment will be provided later.

73
Note: TODO: later on we also need to say something about the semantics of the syntax. TM: what is
this?

40



9. DOL semantics

We recall the notion of satisfaction system [7], called `rooms' in the terminology of [11].
They capture the Tarskian notion of satisfaction of a sentence in a model. For the semantics
of minimization, we assume a pre-order on models.

De�nition 1 A triple R = (Sen,M, |=) is called a satisfaction system, or room, if R
consists of

� a set Sen of sentences,

� a pre-ordered classM of models, and

� a binary relation |= ⊆M× Sen, called the satisfaction relation.

While this signature-free treatment enjoys simplicity and is wide-spread in the literature,
many concepts and de�nitions found in logics, e.g. the notion of a conservative extension,
involve the vocabulary or signature Σ used in sentences. Signatures can be extended with
new non-logical symbols; abstractly, this leads to an ordering relation on signatures.

De�nition 2 An institute I = (Sig,≤, Sen,M, |=) is a signature-indexed room, i.e. con-
sists of

� a preorder (Sig,≤) of signatures;

� a room (Sen,M, |=);

� a function sig : Sen→ Sig, giving the (minimal) signature of a sentence;

� a function sig : Mod→ Sig, giving the signature of a model,

� for any Σ2-model M , a Σ1-model M |Σ1 (called the reduct), provided that Σ1 ≤ Σ2,

such that the following properties hold:

� given Σ1 ≤ Σ2, for any Σ2-model M and any Σ1-sentence ϕ

M |= ϕ i� M |Σ1 |= ϕ

(satisfaction is invariant under reduct),

� for any Σ-model, M |Σ = M , and given Σ1 ≤ Σ2 ≤ Σ,

(M |Σ2)|Σ1 = M |Σ1

(reducts are compositional), and

� for any model M and sentence ϕ,

M |= ϕ implies sig(M) ≥ sig(ϕ)

(signature coherence).

Here, the class of models over a signature Σ (short: Σ-models) is de�ned as

Mod(Σ) := {M ∈M|sig(M) = Σ}

Note that we here require equality of signature, unlike we did for sentences. The reason is
that a model always needs to interpret all of the non-logical symbols of a signature (and not
more), while a sentence might use only part of the non-logical symbols of the signature.

Example Propositional Logic is an institute as follows: Signatures in Prop are just
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sets Σ (of propositional non-logical symbols) as signatures, and signature inclusion is just set
inclusion. A Σ-model M is a mapping from Σ to {true, false}. Σ-sentences are built from
Σ with the usual propositional connectives. Finally, satisfaction of a sentence in a model is
de�ned by the standard truth-table semantics.
Further examples of institutes are: SROIQ(D), Common Logic, unsorted �rst-order logic,

many-sorted �rst-order logic, and many others. Note that reduct is generally given by for-
getting parts of the model, and the pre-order on models is given as follows: M1 ≤ M2 if M1

and M2 only di�er in the interpretation of propositional non-logical symbols and predicates,
and moreover each propositional (and predicate) symbol true in M1 is also true in M2 (for a
given tuple of arguments).
Assume an arbitrary institute.
A theory is a set ∆ ⊆ Sen of sentences It is consistent i� it has at least one model. A

theory ∆ ⊆ Sen is satis�able, if it has a model M (i.e., a model M ∈ M such that M |= ϕ
for ϕ ∈ ∆). Semantic entailment is de�ned as usual: for a theory ∆ ⊆ Sen and ϕ ∈ Sen,
we write ∆ |= ϕ, if all models satisfying all sentences in ∆ also satisfy ϕ.

Lemma 3 (Coincidence Lemma) Let ∆ be a theory with sig(∆) = Σ, and ϕ a sentence.
For determining whether the semantic entailment ∆ |= ϕ holds, it su�ces to consider Σ-
models only.

Corridors are the mappings between rooms. A corridor maps both sentences and models
(syntax and semantics). Models are mapped in reverse direction. The rationale behind this
is as follows: usually, the target room is either logically more expressive or well-suited for
logical coding. Sentences of the source room are represented, or coded in the target room.
Models of the target room are usually richer, so that from a model in the target room, a
model in the source room can be extracted.

De�nition 4 A corridor (α, β) : (Sen1,M1, |=1)−→(Sen2,M2, |=2) consists of

� a sentence translation function α : Sen1−→Sen2, and

� a model reduction function β : M2−→M1, such that

M2 |=2 α(ϕ1) if and only if β(M2) |=1 ϕ1

holds for each M2 ∈M2 and each ϕ1 ∈ Sen1 (satisfaction condition).
A partial corridor is one where β is partial, and the satisfaction condition is only required

for those M2 such that β(M2) is de�ned.

A corridor is called model-expansive, if β is a surjection.

De�nition 5 (Relative Interpretation) Given ∆i a theory in Ri (i = 1, 2), a corridor
(α, β) : R1 →R2 is a relative interpretation, if

β(Mod(∆2)) ⊆ Mod(∆1)

Institute comorphisms capture the intuition of translating a logic into another one. They
extend corridors by mapping also signatures.

De�nition 6 Given institutes I1 = (Sig1,≤1, Sen1,M1, |=1) and I2 = (Sig2,≤2, Sen2,M2,
|=2), an institute comorphism ρ = (Φ, α, β) : I1 −→ I2 consists of

� a monotone map Φ : (Sig1,≤1)→ (Sig2,≤2), and
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� a partial corridor (α, β) : (Sen1,M1, |=1)→ (Sen2,M2, |=2)

such that

� sig2(α(ϕ1)) ≤ Φ(sig1(ϕ1)) for any sentence ϕ1 ∈ Sen1;

� for each I1-signature Σ, β restricts to a total function βΣ : Mod2(Φ(Σ))→Mod1(Σ);

� model translation commutes with reduct, that is, given Σ1 ≤ Σ2 in I1 and a Φ(Σ2)-
model M in I2,

βΣ2(M)|Σ1 = βΣ1(M |Φ(Σ1)).

An institute comorphism is called model-expansive, if all βΣ are surjective.
A subinstitute comorphism is a institute comorphism (Φ, α, β) : I1−→I2 with Φ injec-

tive and preorder-re�ecting, α injective and βΣ bijective for each Σ. In this case, I1 is said
to be a subinstitute of I2.
A simple theoroidal comorphism is like a comorphism, except that the signature trans-

lation functor Φ maps signatures to theories over the target institute.
Institute morphisms capture the intuition of reducing a logic into another one, and are

used for logic reductions.

De�nition 7 Given institutes I1 = (Sig1,≤1, Sen1,M1, |=1) and I2 = (Sig2,≤2, Sen2,M2,
|=2), an institute morphism µ = (Φ, α, β) : I1 −→ I2 consists of

� a monotone map Φ : (Sig1,≤1)→ (Sig2,≤2), and

� a partial corridor (α, β) : (Sen2,M2, |=2)→ (Sen1,M1, |=1)

such that

� Φ(sig1(α(ϕ2))) ≤ sig2(ϕ2) for any sentence ϕ2 ∈ Sen2;

� for each I1-signature Σ, β restricts to a total function βΣ : Mod1(Φ(Σ))→Mod2(Σ);

� model translation commutes with reduct, that is, given Σ1 ≤ Σ2 in I1 and a Σ2-model
M ,

βΣ2(M)|Φ(Σ1) = βΣ1(M |Σ1).

74 Note(74)

9.1. Direct semantics of DOL language constructs
The semantics of DOL is based on a �xed (but in principle arbitrary) heterogeneous logical
environment is assumed. The semantic domains are based on this heterogeneous logical
environement. A speci�c heterogeneous logical environment is given in the annexes.
A heterogeneous logical enviroment is given by a collection of OMS languages and OMS lan-

guage translations1, a collection of institutes, institute morphisms and institute comorphisms
(serving as logics, logic reductions and logic translations), and a collection of serializations.
Moreover, there is a binary supports relation between OMS languages and institutes, and a bi-
nary supports relation between OMS languages and serializations. Some of the comorphisms
are marked as default translations.

74
Note: Introduce exactness
1The terms OMS language and serialization are not de�ned formally. For this semantics, it su�ces
to know that there is a language-speci�c semantics of basic OMSs as de�ned below.
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For pairs of institutes I1 and I2, we assume a pair of default union institute comorphisms
(Φi, αi, βi) : Ii−→I into a common target institute. The default union may also be unde�ned.
We also assume a language-speci�c semantics of basic OMSs, depending on a triple L =

(lang, logic, ser) comprising of an OMS language, a logic (institute) and a serialization as
follows:

semL(Σ,BasicOnto) = (Σ′,∆′) where Σ′ ≥ Σ

This is given by semantics of BasicOnto in L. The signature Σ is the local environment
of non-logical symbols that have been declared previously to BasicOnto. Σ′ ≥ Σ is an
extension of Σ with the non-logical symbols declared in BasicOnto. ∆′ is a set of sentences
over Σ′.
We further assume a language-speci�c semantics of complete (possibly structured) OMSs

sem(L,OntoInSpecificLanguage) = (Σ,M), where Σ is a signature and M a class of
models over Σ.
We assume that in each institute there is a trivial signature ∅ with model class M∅.

Moreover, we assume that for each signature Σ, there is a set of non-logical symbols ent(Σ),
such that Σ ≤ Σ′ implies ent(Σ) ⊆ ent(Σ′). This concludes the de�nition of heterogeneous
logical enviroment.
The semantics of OMSs generally depends on a global environment Γ mapping IRIs to

semantics of OMSs (given below), and a current triple L consisting of the current language,
logic and serialization.2

75 Note(75)

sem(Γ, L,DistOntoDefn) = Γ′

sem(Γ, L,’dist-onto-defn’ , DistOntoName DI1, . . . DIn) = Γ′

where sem(. . . sem(sem(Γ, L,DI1), DI2), . . . , DIn) = (Γ′, L′) 76 Note(76)
sem(Γ, L,OntoInSpecificLanguage) = Γ′

where Γ′ = Γ[IRI 7→ (L,Σ,M)],
(Σ,M) = sem(L,OntoInSpecificLanguage)
and IRI is the IRI of OntoInSpecificLanguage.

sem(L,Qualification) = L′

sem((lang, logic, ser),’lang-select’ , LanguageRef) = (LanguageRef, logic′, ser′)

where logic′ =

{
logic, if LanguageRef supports logic
default logic for LanguageRef, otherwise

ser′ =

{
ser, if LanguageRef supports ser
default serialization for LanguageRef, otherwise

2The initial L is obtained from the �le name extension of the �le containing a particular distributed
OMS, while Γ is obtained by looking up IRIs in the internet and applying the semantics to thus
obtained OMSs.

75
Note: Q-AUT: @TM: Please decide if you like the stuff from ’dist-onto-defn’. I have now used literal
ISO-conforming EBNF syntax here, which means that keywords are enclosed in single quotes, and all
tokens separated by commas.

76
Note: DistOntoName is not used. How could we use it? It seems that the individual OMSs are
directly named with IRIs, and the DistOntoName is not relevant for that? Answer from telco: The
DistOntoName is an IRI that should (as a good practice, but not enforced) agree with the IRI of the
document. Indeed, this applies to any usage of IRI in the standard. This should be stated in the
standard (Christoph). (This is known as "linked data compliance", a good practice to be encouraged
but not to be enforced, as it would break a lot of old OMSs)
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sem((lang, logic, ser),’logic-select’ , LogicRef) = (lang′,LogicRef, ser)

where lang′ =

{
lang, if lang supports LogicRef
the unique language supporting LogicRef, otherwise

Note that �the unique language supporting LogicRef� may be unde�ned; in this case, the
semantics of the whole ’logic-select’ , LogicRef construct is unde�ned.
sem((lang, logic, ser),’logic-select’ , SyntaxRef) = (lang, logic,SyntaxRef)

The semantics is de�ned only if lang supports SyntaxRef.

sem(L,Qualification*) = L′

sem(L,Q1 . . . Qn) = sem(. . . sem(sem(L,Q1), Q2), . . . , Qn)

sem(Γ, L,DistOntoItem) = (Γ′, L′)

sem(Γ, L,Qualification) = (Γ, L′) where L′ = sem(L,Qualification).
Equations for OntoDefn and MappingDefn are given below.

sem(Γ, L, (Σ,M),MinimizableOnto) = (I,Σ′,M′)

In the context of a global environment Γ, the current language, logic and serialization
L, and a local environment (Σ,M) (of previously declared non-logical symbols), an OMS
(MinimizableOnto) O is intepreted as an institute I = logic(Γ, L,O), a signature Σ =
sig(Γ, L,O) in institute I and a class of models M = Mod(Γ, L,O) over signature Σ. We
combine this into sem(Γ, L,O) = (logic(Γ, L,O), sig(Γ, L,O),Mod(Γ, L,O)).
sem(Γ, L, (Σ,M),BasicOnto) = (L,Σ′, {M ′ ∈Mod(Σ′) |M |= ∆′,M ′|Σ ∈M}),

where semL(Σ,BasicOnto) = (Σ′,∆′)
sem(Γ, L, (Σ,M),’onto-ref’ , OntoRef) = Γ(OntoRef)
Note that Γ(OntoRef) may be unde�ned. That is, if a reference (IRI) to an OMS is not

de�ned, the semantics of the enclosing DOL construct is unde�ned.

sem(Γ, L, (Σ,M),ExtendingOnto) = (I,Σ′,M′)

Semantics for MinimizableOnto is inherited.
The semantics for minimization selects the models that are minimal in the class of all

models with the same interpretation for the local environment (= �xed non-logical symbols,
in the terminology of circumscription).
sem(Γ, L, (Σ,M),’minimize’ , MinimizableOnto) = (I,Σ′,M′′),

where (Σ′,M′) = sem(Γ, L, (Σ,M),MinimizableOnto)
andM′′ = {M ∈M′ |M is minimal in {M ′ ∈M′ |M ′|Σ = M |Σ}}

sem(Γ, L,Onto) = (I,Σ,M)

Onto is interpreted in a context similar to that for MinimizableOnto; the di�erence
being that there is no local environment.

77 78 79 Note(77)

Note(78)

Note(79)

77
Note: TODO: specify semantics of module extraction

78
Note: TODO: specify semantics of approximation

79
Note: TODO: specify semantics of implicit translations using default translations
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O sem(Γ, L,O) = . . .

ExtendingOnto sem(Γ, L, (∅,M∅),ExtendingOnto)

’minimize-symbol’ , Onto ,
CircMin , CircVars

(I,Σ,M′) where sem(Γ, L,Onto) = (I,Σ,M),
Σmin = sem(CircMin,Σ), Σvar = sem(CircVars,Σ),
Σfixed = Σ \ (Σmin ∪ Σvar ) and
M′ = { M ∈M|M |Σmin∪Σfixed is minimal in

{M ′ ∈M|Σmin∪Σfixed |M
′|Σfixed = M |Σfixed } }

’translation’ , Onto ,
Translation

(J,Φ(Σ), {M |β(M) ∈M}),
where (I,Σ,M) = sem(Γ, L,Onto)
and sem(L,Σ,Translation) = (Φ, α, β) : I → J

’reduction’ , Onto ,
Reduction

(J,Σ′, {β(M)|Σ′ |M ∈M}),
where (I,Σ,M) = sem(Γ, L,Onto)
and sem(L,Σ,Reduction) = ((Φ, α, β) : I → J,Σ′)

’approximation’, Onto ,
Approximation

TODO

’union’ , Onto , [
ConsStrength ] , Onto

(I,Σ,M) where
Σi = sig(Γ, L,Oi), Ii = logic(Γ, L,Oi) (i = 1, 2)
(Φi, αi, βi) : Ii−→I are the default union comorphisms for I1 and
I2 (if existing)
Σ = Φ1(Σ1) ∨ Φ2(Σ2) (if the supremum is de�ned)
M = {M ∈Mod(Σ) |βi(M)|Σi ∈Mod(Γ, L,Oi)}

’extension’ , Onto ,
ExtensionOnto

sem(Γ, L, (Σ,M),ExtensionOnto)

’module-extract’ ,
OntoRef , Conservative,
ExtractionMethod Σ

TODO

’qual-onto’ , {
Qualification } , Onto

sem(Γ, sem(L,{ Qualification }),Onto)

sem(L,Σ,Reduction) = (µ = (Φ, α, β),Σ′) where Σ′ ≤ Φ(Σ)

sem(L,Σ,’hidden’ LR1 . . . LRn (’symbol-items’ EI1 . . . EIn)) = (µ,Σ′)
where µ = (Φ, α, β) = sem(LRn) ◦ · · · ◦ sem(LR1)
and Σ′ is the maximal subsignature of Φ(Σ) with ent(Σ′) disjoint from EI1 . . . EIn. (The
semantics is unde�ned, if such a subsignature does not exist.)
sem(L,Σ,’revealed’ (’symbol-items’ EI1 . . . EIn)) = (id,Σ′)

where id is the identity institute morphism, and and Σ′ is the minimal subsignature of Σ with
ent(Σ′) containing EI1 . . . EIn. (The semantics is unde�ned, if such a subsignature does not
exist.)

sem(L,Σ,SymbolItems) = Σ′ where Σ′ ≤ Σ

sem(L,Σ,’symbol-items’ EI1 . . . EIn) =
∨
{Σ′ ≤ Σ in L | the non-logical symbols in

EI1 . . . EIn do not occur in ent(Σ′)}

sem(L,Σ,Translation) = ρ

sem(L,Σ,’renaming’ LT1 . . . LTn(’symbol-map-items’ E1 . . . Em)) = ρ = (Φ, α, β)
where rho = sem(LTn) ◦ · · · ◦ sem(LT1)
The semantics is de�ned only if E1 . . . Em occur in Φ(Σ).
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sem(L,Σ,SymbolMapItems) = Σ′ where Σ′ ≥ Σ

True renamings are not possible without institutional logics, only the presence of non-
logical symbols in a signature can be checked.

sem(L,Σ,’symbol-map-items’ E1 . . . En) =

{
Σ if E1, . . . , En are contained in Σ
unde�ned otherwise

sem(Γ, L, (Σ,M),ExtensionOnto) = (Σ′,M′)

sem(Γ, L, (Σ,M),[ ConsStrength ] , [ ExtensionName ] , ExtendingOnto) = (Σ′,M′)
where (Σ′,M′) = sem(Γ, L, (Σ,M),ExtendingOnto)
If ConsStrength is ’model-conservative’ or ’implied’, the semantics is only de-

�ned if each model inM is the Σ-reduct of some model inM′. In case that ConsStrength is
’implied’, it is furthermore required that Σ = Σ′. If ConsStrength is ’consequence-conservative’,
the semantics is only de�ned if for each Σ-sentence ϕ, M′ |= ϕ implies M |= ϕ. If
ConsStrength is ’definitional’, the semantics is only de�ned if each model in M
is the Σ-reduct of a unique model inM′.

sem(Γ, L,OntoDefn) = (Γ′, L)

An OMS de�nition extends the global environment:
sem(Γ, L,’onto-defn’ , OntoName , [ ConsStrength ] , Onto)
= (Γ[OntoName 7→ sem(Γ, L,Onto)], L)

80 Note(80)

If ConsStrength is ’conservative’, the semantics is only de�ned if sem(Γ, L,Onto) 6=
∅. If ConsStrength is ’conservative’, the semantics is only de�ned if sem(Γ, L,Onto)
is a singleton.

sem(LogicRef) = L

L is the institute from the heterogeneous logical environment named by LogicRef.

sem(L,OntoLangTrans) = ρ

sem(L,’named-trans’ , OntoLangTransRef) = ρ where ρ is the institute comorphism
from the heterogeneous logical environment named by OntoLangTransRef. This is de�ned
only if the domain of ρ is L.
sem(L,’qual-trans’ , OntoLangTransRef LR1 LR2) = ρ where ρ is the institute

comorphism from the heterogeneous logical environment named by OntoLangTransRef.
This is de�ned only if ρ : sem(LR1)→ sem(LR2) and L = sem(LR1).

81 Note(81)
sem(L,’anonymous-trans’ LR1 LR2) = ρ where ρ is the unique institute comorphism

from the heterogeneous logical environment running from sem(LR1) to sem(LR2). This is
de�ned only if L = sem(LR1).
sem(L,’default-trans’ , LolaRef) = ρ where ρ is the unique institute comorphism

from the heterogeneous logical environment running from L to sem(LolaRef).

80
Note: Should we allow for overriding existing OMS definitions? Or should OntoName be new?

81
Note: We need some “algorithm” for handling LolaRefs that are actually LanguageRefs, not
LogicRefs. Suppose a translation lang1→lang2 is referenced, let e(lang) be the logic that exactly
captures the expressivity of lang. For lang1→lang2 there might be a “language-side” default transla-
tion, which does not have a corresponding “logic-side” mapping at all, or whose exactly corresponding
“logic-side” mapping is not the default for e(lang1)→e(lang2).
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sem(Γ, L,MappingDefn) = (Γ′, L)

See equations for IntprDefn, EquivDefn and AlignDefn.

sem(Γ, L,IntprDefn) = (Γ′, L)

82 sem(Γ, L,’intpr-defn’ , IntprName , ( ’intpr-type’ O1 O2 )) = Note(82)
(Γ[IntprName 7→ (Σ1,Σ2)], L) where

� (Σ1,M1) = sem(Γ, L,O1);

� (Σ2,M2) = sem(Γ, L,O2);

� the semantics is de�ned only ifM2|Σ1 ⊆M1.

sem(Γ, L,EquivDefn) = (Γ′, L)

sem(Γ, L,’equiv-defn’ , EquivName , ( ’equiv-type’ O1 O2 ) O3) =
(Γ[EquivName 7→ (Σ1,Σ2,Σ3)], L) where

� (Σ1,M1) = sem(Γ, L,O1);

� (Σ2,M2) = sem(Γ, L,O2);

� (Σ3,M3) = sem(Γ, L,O3);

� the semantics is de�ned only if for i = 1, 2, Σi ≤ Σ3 and each model in Mi can be
uniquely expanded to a model inM3.

sem(Γ, L,AlignDefn) = (Γ′, L)

Alignments are interpreted only syntactically:
83 sem(Γ, L,’align-defn’ , AlignName , [ AlignCard ] , AlignType , { Correspondence }) =Note(83)

(Γ[AlignName 7→ { Correspondence }], L)

9.2. Translational semantics of DOL language
constructs

The translational semantics uses Common Logic as a foundational framework for the dis-
tributed OMS, modeling and speci�cation language DOL, similar to what set theory provides
for general mathematical theories. This semantics assumes that each involved OMS language
is mapped to CL by a weakly exact translation. The semantics is de�ned by �rst translating
a heterogeneous OMS to CL, and then using the direct semantics for the result.
Note that since the result of translating a DOL OMS entirely to CL is homogeneous, the

clause for logic translation of the direct semantics will not be used. Using default logic
translations and compositions of these, many logics can be mapped to Common Logic, while
the DOL constructs like interpretations stay the same.3

82
Note: Q-AUT: Optional [ Conservative ] argument is missing.

83
Note: Q-AUT: Semantics does not yet cover optional [ AlignCard ].
3The translational semantics is not applicable for logics without a default translation of Common
Logic.
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We de�ne the syntactic translation CLρ of DOL OMSs, depending on a logic translation
ρ : L→ CL, to Common Logic below. (The translations of the other syntactic categories are
straightforward.)

84

CLρ(〈Σ,∆〉) = 〈Φ(Σ), α(∆)〉, where ρ = (Φ, α, β)
CLρ(O with logic ρ′) = CLρ◦ρ′(O)
CLρ(O then CS 〈Σ,∆〉) = CLρ(O) then CS CLρ(〈Σ,∆〉)
CLρ(OntoRef) = OntoRef
CLρ(logic LogicRef O) = CLdefault(LogicRef,CL)(O)

Note(84)

9.3. Collapsed Semantics of DOL language constructs
The collapsed semantics requires the representation of the meta level within CL. For this
purpose, the model-level semantics introduced in the previous section should be complemented
by a theory-level semantics: a distributed OMS then denotes a basic theory in some logic
(which amounts to �attening out all structure), plus some conditions for conservativity and
relative interpretations. For each logic, one needs to axiomatise a speci�c partial order of
signatures in CL, plus a set of sentences equipped with a logical consequence relation. In
order to avoid the formalisation of models and the satisfaction relation (which would require
the inclusion of a set theory like ZFC), a sound and complete calculus is axiomatised for
each logic. For each logic translation, the signature and sentence translations need to be
axiomatised. We require that this axiomatisation is done in such a way that the resulting
semantics is compatible with the translational semantics. Although this formalisation is
doable in principle, we refrain form providing the (massive) details.

85 Note(85)

9.4. OMS language translations
The concept of OMS language translation has been formalized as institute comorphism.
Provide some examples
special cases to be described

84
Note: Extend this to all DOL constructs

85
Note: Q-ALL: The collapsed semantics is still very vague, and is more a research plan than a definite
proposal. Any ideas how to make this more precise?
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/to be supplemented in the �nal version/
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A. Annex (normative): DOL text
serialization

A.1. Document type
MIME type application/dol+text86 Note(86)

Filename extension .dol87 Note(87)

A.2. Concrete Syntax

A.2.1. Distributed OMSs

DistOnto = [ PrefixMap ] , DistOntoDefn
| OntoInConformingLanguage ;

DistOntoDefn = ’distributed OMS’ , DistOntoName , { DistOntoItem } ;
OntoInConformingLanguage = ? language-specific ? ;
DistOntoItem = OntoDefn | MappingDefn | Qualification ;
Qualification = LanguageQual | LogicQual | SyntaxQual ;
LanguageQual = ’language’ , LanguageRef ;
LogicQual = ’logic’ , LogicRef ;
SyntaxQual = ’serialization’ , SyntaxRef ;
DistOntoName = IRI ;

PrefixMap = ’%prefix(’ , { PrefixBinding } , ’)%’ ;
PrefixBinding = BoundPrefix , IRIBoundToPrefix ;
BoundPrefix = ’:’ | Prefix (* see de�nition in clause 8.5.2 *)

88 Note(88)
;

IRIBoundToPrefix = ’<’ , FullIRI , ’>’ ;

Note that we denote the empty pre�x (called �no pre�x� in W3C/TR REC-rdfa-core-
20120607, Section 6) by a colon inside the pre�x map, but completely omit it in CURIEs.
This is the style of the OWL Manchester syntax [17] but di�ers from the RDFa Core 1.1
syntax.

A.2.2. Heterogeneous OMSs
89 Note(89)
86
Note: FYI: just a placeholder so far, needs discussion

87
Note: the most intuitive one, but gives the text serialization a privileged role over the others

88
Note: Q-AUT: I think that, in contrast to OWL Manchester, we can allow prefix names that match
keywords of the DOL syntax, as we are enclosing the whole prefix map into an annotation construct –
right?

89
Note: TODO: merge ALIGN-TYPE with INTPR-TYPE
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BasicOnto = OntoInConformingLanguage ;
MinimizableOnto = BasicOnto

| OntoRef , [ ImportName ] ;
ExtendingOnto = MinimizableOnto

| MinimizeKeyword , ’{’ , MinimizableOnto , ’}’ ;
MinimizeKeyword = ’minimize’ | ’closed-world’ ;
Onto = ExtendingOnto

| Onto , MinimizeKeyword , CircMin , [ CircVars ]
| Onto , Translation
| Onto , Reduction
| Onto , Extraction
| Onto , Approximation
| Onto , ’and’ , [ ConsStrength ] , Onto
| Onto , ’then’ , ExtensionOnto
| { Qualification } , ’:’ , GroupOnto
| Onto, ’bridge’, { Translation } , Onto
| ’combine’ , CombinedElements , [ ExcludeExtensions

] ;
90 Note(90)

CircMin = Symbol , { Symbol } ;
CircVars = ’vars’ , ( Symbol , { Symbol } ) ;

GroupOnto = ’{’ , Onto , ’}’
| OntoRef ;

Translation = ’with’ , { LogicTranslation } , [ SymbolMapItems ] ;
LogicTranslation = ’translation’ , OntoLangTrans ;

Reduction = ’hide’ , { LogicReduction } , [ SymbolItems ]
| ’reveal’ , [ SymbolMapItems ] ;

LogicReduction = ’along’ , OntoLangTrans ;

SymbolItems = Symbol { ’,’ , Symbol } ;
SymbolMapItems = SymbolOrMap { ’,’ , SymbolOrMap } ;

Extraction = ’extract’ , Conservative , InterfaceSignature, ’with’, ExtractionMethod

Approximation = ’approximate’ , ApproxMethod ;

ExtensionOnto = [ ConsStrength ] , [ ExtensionName ] , ExtendingOnto ;

ConsStrength = Conservative
| ’%mono’
| ’%wdef’
| ’%def’
| ’%implied’ ;

90
Note: combine O1 O2 takes all views coming into O1 and O2 into consideration
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Conservative = ’%ccons’
| ’%mcons’91 ; Note(91)

InterfaceSignature = SymbolItems ;

ImportName = ’%(’ , IRI , ’)%’ ;
ExtensionName = ’%(’ , IRI , ’)%’ ;

OntoOrMappingRef = IRI ;

CombinedElements = CombinedElement { ’,’ , CombinedElement } ;
CombinedElement = [ Id , ’:’ ] , OntoOrMappingRef ;
ExcludeExtensions = ’excluding’ , ExtensionRef , { ’,’ , ExtensionRef
} ;

OntoDefn = ’ontology’ , OntoName , ’=’ , [ ConsStrength ] , Onto , [ ’end’ ]92Note(92)
;

Symbol = IRI ;
SymbolMap = Symbol , ’7→’ , Symbol ;
SymbolOrMap = Symbol

| SymbolMap ;

OntoName = IRI ;
IntprName = IRI ;

OntoRef = IRI ;
IntprRef = IRI ;
ExtensionRef = IRI ;

LanguageRef = IRI ;
LogicRef = IRI ;
SyntaxRef = IRI ;

LoLaRef = LanguageRef
| LogicRef ;

OntoLangTrans = OntoLangTransRef
| OntoLangTransRef , ’:’ , LoLaRef , ’→’ , LoLaRef
| LoLaRef , ’→’ , LoLaRef
| ’→’ , LoLaRef ;

OntoLangTransRef = IRI ;

91
Note: Q-AUT: Do we want the CASL-style “cons” as a synonym for “mcons” in the standard? Or just
in Hets, as a “hidden feature”? TM: I would say: the latter. CL: OK, I wanted to file this as a Hets ticket,
but Trac was down. Let’s do it some other time and then remove this comment.

92
Note: TODO: Here and in other, similar contexts, we might need to say more, as “end” is not really
always optional. This is the “underlined end” from the CASL specification, but there is no such construct
in ISO EBNF.
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ApproxMethod = ’with’ , ApproxMethodRef
| ’in’ , LoLaRef , ’with’ , ApproxMethodRef
| ’in’ , LoLaRef ;

ApproxMethodRef = IRI ;

ExtractionMethod = IRI ;

A.2.3. OMS Mappings

MappingDefn = IntprDefn | EquivDefn | ModuleRelDefn | AlignDefn ;

IntprDefn = IntprKeyword , IntprName , [ Conservative ] , ’:’ , IntprType , [ ’end’ ]
| IntprKeyword , IntprName , [ Conservative ] , ’:’ , IntprType , ’=’ ,
{ LogicTranslation } , [ SymbolMapItems ] , [ ’end’ ] ;

IntprKeyword = ’interpretation’ | ’view’ ;
IntprName = IRI ;
IntprType = GroupOnto , ’to’ , GroupOnto ;

EquivDefn = EquivKeyword , EquivName , ’:’ , EquivType , ’=’ , Onto , [ ’end’ ] ;
EquivKeyword = ’equivalence’ ;
EquivName = IRI ;
EquivType = GroupOnto , ’<->’ , GroupOnto ;

ModuleRelDefn = ’module’ , ModuleName , [ Conservative ] , ’:’ , ModuleType ,
’for’ , InterfaceSignature ;

ModuleName = IRI ;
ModuleType = Onto , ’of’ , Onto ;

AlignDefn = ’alignment’ , AlignName , [ AlignCards ] , ’:’ , AlignType , [ ’end’ ]
| ’alignment’ , AlignName , [ AlignCards ] , ’:’ , AlignType , ’=’ ,
Correspondence , { ’,’ , Correspondence } , [ ’end’ ] ;

AlignName = IRI ;
AlignCards = AlignCardForward , AlignCardBackward ;
AlignCardForward = AlignCard ;
AlignCardBackward = AlignCard ;
AlignCard = ’1’ | ’?’ | ’+’ | ’*’ ;
AlignType = GroupOnto , ’to’ , GroupOnto93 ; Note(93)

Correspondence = CorrespondenceBlock
| SingleCorrespondence
| ’*’ ;

CorrespondenceBlock = ’relation’ , [ RelationRef ] , [ Confidence ] ,

93
Note: Q-AUT: would it make sense to merge this with IntprType?
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’{’ , Correspondence , { ’,’ , Correspondence } , ’}’ ;
SingleCorrespondence = SymbolRef , [ RelationRef ] ,

[ Confidence ] , TermOrSymbolRef , [ CorrespondenceId ] ;
CorrespondenceId = ’%(’ , IRI , ’)%’ ;
SymbolRef = IRI ;
TermOrSymbolRef = Term | SymbolRef (* Term is logic-specific *) ;94Note(94)
RelationRef = ’>’ | ’<’ | ’=’ | ’%’ | 95 ’$\ni$’ | ’$\in$’ | ’$\mapsto$’ | IRI ;Note(95)
Confidence = Double ? where Double ∈ [0, 1] ? ;

A.3. Identifiers

IRI = ’<’ , FullIRI , ’>’ | CURIE ;
FullIRI = ? an IRI as defined in \nisref{IETF/RFC 3987:2005} ? ;
CURIE = ? see \cref{c:curies} ? ;

In a CURIE without a pre�x, the reference part is not allowed to match any of the
keywords of the DOL syntax (cf. clause ).

A.4. Lexical Symbols
The character set for the DOL text serialization is the UTF-8 encoding of Unicode ISO/IEC
10646. However, OMSs can always be input in the Basic Latin subset, also known as ASCII.96 Note(96)
For enhanced readability of OMSs, the DOL text serialization particularly supports the native
Unicode glyphs that represent common mathematical operators.

A.4.1. Key Words and Signs
The lexical symbols of the DOL text serialization include various key words and signs that
occur as terminal symbols in the context-free grammar in annex A.2. Key words and signs
that represent mathematical signs are displayed as such, when possible, and those signs that
are available in the Unicode character set may also be used for input.

Key Words

Key words are always written lowercase. The following key words are reserved, and are not
available for use as complete identi�ers97, although they can be used as parts of tokens: Note(97)
and distributed end hide interpretation library logic minimize

ontology reveal then to vars view with

94
Note: Q-AUT: In interpretations we did away with symbol-to-term mappings, as parsing for them will be
hard to implement, and as Michael convinced us with the COLORE example where auxiliary theories
using equality take care of the mapping. Do we want to keep them for alignments? (In writing this I
have not yet looked into the Alignment API.)

95
Note: Q-AUT: For ’has-instance’ and ’instance-of’, the Alignment API does not quite have
a symbolic notation, but simply “HasInstance” and “InstanceOf”, which, in our syntax, conflicts with
abbreviated IRIs. I’d suggest either referring to these relations using normal DOL IRIs (abbreviated or
not), or to come up with some symbolic notation. The one I gave here works for Unicode, but I don’t
really know how to write it in ASCII.

96
Note: TODO: maybe we need to say something about encoding IRIs as URIs in the latter case

97
Note: TODO: figure out what that actually means. If we use OWL Manchester’s style of abbreviating
IRIs, it probably means that in the worst case some IRIs can’t be abbreviated but must be given as
complete global IRIs
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Table A.1.: Key Signs

Sign Unicode Code Point Basic Latin substitute

{ U+007B LEFT CURLY BRACKET
} U+007D RIGHT CURLY BRACKET
: U+003A COLON
= U+003D EQUALS SIGN
, U+002C COMMA
7→ U+21A6 RIGHTWARDS ARROW FROM BAR |->
� U+2192 RIGHTWARDS ARROW ->

Key Signs

Table A.1 following key signs are reserved, and are not available for use as complete identi�ers.
Key signs that are outside of the Basic Latin subset of Unicode may alternatively be encoded
as a sequence of Basic Latin characters.
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vocabulary

98 Note(98)

B.1. Document type
DOL RDF does not have one speci�c document type; instead, it may be represented in any
RDF serialization, for example RDF/XML, whose MIME type is application/rdf+xml.

RDF namespace http://purl.net/dol/1.0/rdf#

For reasons of practical applicability, the RDF vocabulary is given as an OWL ontology1.
The RDFS subset of this OWL ontology is normative; all features beyond that are informative
but intended to be useful for applications supporting DOL.
About mapping identi�ers in basic OMSs to IRIs (clause 8.5.3), note that pre�x maps are

not part of the RDF abstract syntax. Therefore, to prevent loss of this semantically essential
information, the DOL RDF serialization provides a dedicated vocabulary for expressing pre�x
maps. A DOL OMS in an RDF serialization that supports pre�x maps may state them
redundantly as syntactic RDF pre�xes as well as using the DOL RDF vocabulary.

98
Note: Given the agreement to drop the RDF serialization, this is obsolete. Still I need to revise it, as
part of this may be relevant w.r.t. the registry vocabulary.

1The implementation is available for download as RDF/XML from the namespace URL given above,
or as a source �le in OWL Manchester Syntax from http://interop.cim3.net/file/pub/
OntoIOp/Working_Draft/syntax/dol-rdf.omn.
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C. Annex (normative): RDF
vocabulary for describing OMS
languages conforming with DOL

This annex speci�es an RDF vocabulary, formalized in RDFSW3C/TR REC-rdf-schema:2004,
for describing OMS languages that conform with DOL, and their features, including logics and
serializations. This vocabulary shares its namespace (http://purl.net/dol/1.0/rdf#)
with the DOL RDF vocabulary for serializing DOL OMSs (cf. annex B).99 Note(99)
The tables in this annex list the classes and properties of the RDF vocabulary for describing

OMS languages. All class and properties are assumed to be in the DOL RDF namespace unless
stated otherwise.
Table C.1 lists the classes of the RDF vocabulary for describing OMS languages. Each row

of the table translates into the following RDF triples (given in Turtle serialization):100 Note(100)

_:class rdf:type rdfs:Class ;
rdfs:comment "documentation" .

Table C.1.: Classes of the RDF vocabulary for describing OMS languages

Class documentation

OMSLanguage an OMS language
Logic a logic that de�nes the semantics of an OMS language
Serialization a serialization of an OMS language

Table C.2 lists the properties of the RDF vocabulary for describing OMS languages. Each
row of the table translates into the following RDF triples (given in Turtle serialization):

_:property rdf:type rdf:Property ;
rdfs:domain _:domain ;
rdfs:range _:range ;
rdfs:comment "documentation" .

101 Note(101)

99
Note: FYI: given its light weight I think that makes sense. It doesn’t rule out extensions to OWL (or
even DOL) anyway.

100
Note: TODO: also cover rdfs:subClassOf (once we have such cases)

101
Note: Q-AUT: we need to define “sublogic” as a term – how? I guess that would include the notion of
an “OWL profile”
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Common Logic

SROIQDL-LiteR

CLIF

XCL

Manchester Syntax

OWL 2 XML

RDF / XML

Turtle

OWL 2 DL

RDF

RDFS

Common Logic

RDFS

RDF

OWL 2 QL

OWL 2 RL

OWL 2 EL

DL-RL

EL++

Serializations Ontology Languages Logics

supports serialization sublanguage of

induced translation exact logical expressivity

translatable to

sublogic of

Figure C.1.: Subset of the OntoIOp registry, shown as an RDF graph
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Table C.2.: Properties of the RDF vocabulary for describing OMS languages

Property domain range
documentation

subLogicOf Logic Logic
The subject is a sublogic of the object

supportsLogic OMSLanguage Logic
The subject OMS language has a semantics speci�ed in terms of the object logic.

speci�esSemanticsOf Logic OMSLanguage
The subject logic is used to specify the semantics of the object OMS language; inverse of
supportsLogic.

supportsSerialization OMSLanguage Serialization
OMSs in the subject OMS language can be serialized in the object serialization. Note that
the serialization should be as speci�c as possible, i.e. one should not say that �OWL can be
serialized in XML� and �Common Logic can be serialized in XML�, but instead �OWL can be
serialized in OWL/XML� and �Common Logic can be serialized in XCL�, taking into account
that OWL/XML and XCL are two di�erent XML languages.

serializes Serialization OMSLanguage
The subject logic is used to specify the semantics of the object OMS language; inverse of
supportsSerialization.
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D. Annex (normative): Conformance
of OWL 2 with DOL

The semantic conformance of OWL 2 (as speci�ed in W3C/TR REC-owl2-syntax:2009) with
DOL is established in [35].
The OWL/XML serialization satis�es the criteria for XML conformance. The mapping of

OWL 2 to RDF graphs satis�es the criteria for RDF conformance102 . The OWL 2 Manchester Note(102)
syntax satis�es the criteria for text conformance. 103

Note(103)
OWL can be formalised as an institute as follows:

De�nition 8 OWL 2 DL. OWL 2 DL is the description logic (DL) based fragment of the web
ontology language OWL 2. We start with the simple description logic ALC, and then proceed
to the more complex description logic SROIQ which is underlying OWL 2 DL. Signatures of
the description logic ALC consist of a set A of atomic concepts, a set R of roles and a set I of
individual constants. The partial order on signatures is de�ned as component wise inclusion.
Models are �rst-order structures I = (∆I , .I) with universe ∆I that interpret concepts as
unary and roles as binary predicates (using .I). I1 ≤ I2 if ∆I1 = ∆I2 and all concepts and
roles of I1 are subconcepts and subroles of those in I2. Sentences are subsumption relations
C1 v C2 between concepts, where concepts follow the grammar104 Note(104)

C ::= A |> |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

These kind of sentences are also called TBox sentences. Sentences can also be ABox sentences,
which are membership assertions of individuals in concepts (written a : C for a ∈ I) or pairs
of individuals in roles (written R(a, b) for a, b ∈ I, R ∈ R). Satisfaction is the standard
satisfaction of description logics.

The logic SROIQ [23], which is the logical core of the Web Ontology Language OWL 2
DL1, extends ALC with the following constructs: (i) complex role inclusions such as R◦S v S
as well as simple role hierarchies such as R v S, assertions for symmetric, transitive, re�ex-
ive, asymmetric and disjoint roles (called RBox sentences, denoted by SR), as well as the
construct ∃R.Self (collecting the set of `R-re�exive points'); (ii) nominals, i.e. concepts of the
form {a}, where a ∈ I (denoted by O); (iii) inverse roles (denoted by I); quali�ed and un-
quali�ed number restrictions (Q). For details on the rather complex grammatical restrictions
for SROIQ (e.g. regular role inclusions, simple roles) compare [23].

OWL pro�les are syntactic restrictions of OWL 2 DL that support speci�c modelling and
reasoning tasks, and which are accordingly based on DLs with appropriate computational prop-
erties. Speci�cally, OWL 2 EL is designed for ontologies containing large numbers of concepts
or relations, OWL 2 QL to support query answering over large amounts of data, and OWL 2 RL
to support scalable reasoning using rule languages (EL, QL, and RL for short) .

102
Note: This is not exactly true, as some things, e.g. imports, can’t be identified.

103
Note: also need conformance propositional logic; use PL “profile” of the CASL “IFIP standard”

104
Note: Q-AUT: This grammar should also be adapted to ISO EBNF.
1See also http://www.w3.org/TR/owl2-overview/
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We sketch the logic EL which is underlying the EL pro�le.2 EL is a syntactic restriction of
ALC to existential restriction, concept intersection, and the top concept:

C ::= A |> |C1 u C2 | ∃R.C

Note that EL does not have disjunction or negation, and is therefore a sub-Boolean logic.

2To be exact, EL adds various `harmless' expressive means and syntactic sugar to EL resulting in
the DL EL ++.

63



E. Annex (normative): Conformance
of Common Logic with DOL

The semantic conformance of Common Logic (as speci�ed in ISO/IEC 24707:2007) with DOL
is established in [35].
The XCF dialect of Common Logic has a serialization that satis�es the criteria for XML

conformance. The CLIF dialect of Common Logic has a serialization that satis�es the criteria
for text conformance.
Common Logic can be de�ned as an institute as follows:

De�nition 9 Common Logic. A common logic signature Σ (called vocabulary in Common
Logic terminology) consists of a set of names, with a subset called the set of discourse names,
and a set of sequence markers. An inclusion of signatures needs to ful�l the requirement
that a name is a discourse name in the smaller signature if and only if it is one in the
larger signature. A Σ-model I = (UR,UD , rel , fun, int) consists of a set UR, the universe of
reference, with a non-empty subset UD ⊆ UR, the universe of discourse, and four mappings:

� rel from UR to subsets of UD∗ = {< x1, . . . , xn > |x1, . . . , xn ∈ UD} (i.e., the set of
�nite sequences of elements of UD);

� fun from UR to total functions from UD∗ into UD;

� int from names in Σ to UR, such that int(v) is in UD if and only if v is a discourse
name;

� seq from sequence markers in Σ to UD∗.

A Σ-sentence is a �rst-order sentence, where predications and function applications are writ-
ten in a higher-order like syntax: t(s). Here, t is an arbitrary term, and s is a sequence term,
which can be a sequence of terms t1 . . . tn, or a sequence marker. A predication t(s) is inter-
preted by evaluating the term t, mapping it to a relation using rel , and then asking whether the
sequence given by the interpretation s is in this relation. Similarly, a function application t(s)
is interpreted using fun. Otherwise, interpretation of terms and formulae is as in �rst-order
logic. A further di�erence is the presence of sequence terms (namely sequence markers and
juxtapositions of terms), which denote sequences in UD∗, with term juxtaposition interpreted
by sequence concatenation. Note that sequences are essentially a non-�rst-order feature that
can be expressed in second-order logic.

Model reducts are de�ned in the following way: Given a signature inclusion Σ′ ≤ Σ and a
Σ-model I = (UR,UD , rel , fun, int), I|Σ′ = (UR′,UD , rel ′, fun ′, int ′) is de�ned by

� UR′ is the restriction of UR to those elements satisfying the following conditions:

1. they are not in the universe of discourse UD;

2. they are the interpretation (according to int) of a non-discourse name in Σ;

3. they are not the interpretation (according to int) of a non-discourse name in Σ′.

� rel ′ is rel restricted to UR′;
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� fun ′ is fun restricted to UR′;

� int ′ is int restricted to Σ′.

Note that with this notion of reduct, extensions commonly understood as de�nitions in
segregated dialects of Common Logic are indeed both de�nitional and conservative extensions.

105 Note(105)
We call the restriction of CL to sentence without sequence markers CL −.

105
Note: Ordering on models! Universes agree, fun1(x) = fun2(x), rel1(x) ⊆ rel2(x), int1(n) =
int2(n)
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of RDF and RDFS with DOL

The semantic conformance of RDFS (as speci�ed in W3C/TR REC-rdf-schema:2004) with
DOL is established in [35].
The way of representing RDFS ontologies as RDF graphs satis�es the criteria for RDF

conformance.

De�nition 10 (RDF and RDFS) Following [30], we de�ne the institutions for the Resource
Description Framework (RDF) and RDF-Schema (RDFS), respectively. These are based on
a logic called bare RDF (SimpleRDF), which consists of triples only (without any prede�ned
resources).

A signature Rs in SimpleRDF is a set of resource references. For sub, pred, obj ∈ Rs, a
triple of the form (sub, pred, obj) is a sentence in SimpleRDF, where sub, pred, obj represent
subject name, predicate name, object name, respectively. An Rs-modelM = 〈Rm, Pm, Sm, EXTm〉
consists of a set Rm of resources, a set Pm ⊆ Rm of predicates, a mapping function Sm :
Rs → Rm, and an extension function EXTm : Pm → P(Rm × Rm) mapping every predicate
to a set of pairs of resources. Satisfaction is de�ned as follows:

M |=Rs (sub, pred, obj)⇔ (Sm(sub), (Sm(obj)) ∈ EXTm(Sm(pred)).

Both RDF and RDFS are built on top of SimpleRDF by �xing a certain standard vocabulary both
as part of each signature and in the models.106 Actually, the standard vocabulary is given by Note(106)
a certain theory. In case of RDF, it contains e.g. resources rdf:type and rdf:Property
and rdf:subject, and sentences like e.g. (rdf:type,rdf:type, rdf:Property), and
(rdf:subject,rdf:type, rdf:Property).

In the models, the standard vocabulary is interpreted with a �xed model. Moreover, for each
RDF-modelM = 〈Rm, Pm, Sm, EXTm〉, if p ∈ Pm, then it must hold (p, Sm(rdf:Property)) ∈
EXTm(rdf:type). For RDFS, similar conditions are formulated (here, for example also the
subclass relation is �xed).

In the case of RDFS, the standard vocabulary contains more elements, like rdf:domain,
rdf:range, rdf:Resource, rdf:Literal, rdf:Datatype, rdf:Class, rdf:subClassOf, rdf:subPropertyOf,
rdf:member, rdf:Container, rdf:ContainerMembershipProperty.

There is also OWL full, an extension of RDFS with resources like owl:Thing and owl:oneOf,
tailored towards the representation of OWL.

106
Note: Refer to the RDF standard here.
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G. Annex (normative): A Core Logic
Graph

This annex provides a core graph of logics and translations, covering those OMS languages
whose conformance with DOL is established in the preceding, normative annexes (OWL 2
in annex D, Common Logic in annex E, and RDFS in annex F). The graph is shown in
Figure G.1. Its nodes refer to the following OMS languages and pro�les:

� RDF W3C/TR REC-rdf-concepts:2004

� RDFS W3C/TR REC-rdf-schema:2004

� EL, QL, RL (all being pro�les of OWL) W3C/TR REC-owl2-pro�les:2009

� OWL W3C/TR REC-owl2-syntax:2009

� CL (Common Logic) ISO/IEC 24707:2007

The translations are speci�ed in [35]. 107 Note(107)
108

Note(108)

G.1. EL → OWL and EL++ → SROIQ(D)

EL → OWL is the sublanguage inclusion obtained by the syntactic restriction according to
the de�nition of EL, see W3C/TR REC-owl2-pro�les:2009. Since by de�nition, EL + + is
a syntactic restrition of SROIQ(D), EL + + → SROIQ(D) is the corresponding sublogic
inclusion.

G.2. QL → OWL and DL-LiteR → SROIQ(D)

QL → OWL is the sublanguage inclusion obtained by the syntactic restriction according to
the de�nition of QL, see W3C/TR REC-owl2-pro�les:2009. Since by de�nition, DL-LiteR is
a syntactic restrition of SROIQ(D), DL-LiteR → SROIQ(D) is the corresponding sublogic
inclusion.

G.3. RL → OWL and RL → SROIQ(D)

RL→ OWL is the sublanguage inclusion obtained by the syntactic restriction according to the
de�nition of RL, see W3C/TR REC-owl2-pro�les:2009. Since by de�nition, RL is a syntactic
restrition of SROIQ(D), RL → SROIQ(D) is the corresponding sublogic inclusion.

107
Note: TODO: Provide linear syntax here (as in the paper)

108
Note: FYI: We need this in order to be able to say something about default translations, and about
establishing conformance by translation to a language that already conforms.
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orange: first-order with some 
              second-order constructs
 

Figure G.1.: Translations between conforming OMS languages (normative)

G.4. SimpleRDF → RDF

SimpleRDF → RDF is an obvious inclusion, except that SimpleRDF resources need to be
renamed if they happen to have a prede�ned meaning in RDF. The model translation needs
to forget the �xed parts of RDF models, since this part can always reconstructed in a unique
way, we get an isomorphic model translation.

G.5. RDF → RDFS

This is entierly analogous to SimpleRDF→ RDF.

G.6. SimpleRDF → SROIQ(D)
109 Note(109)
A SimpleRDF signature is translated to SROIQ(D) by providing a class P and three roles

sub, pred and obj (these reify the extension relation), and one individual per SimpleRDF
resource. A SimpleRDF triple (s, p, o) is translated to the SROIQ (D) sentence

> v ∃U.(∃sub.{s} u ∃pred.{p} u ∃obj.{o}).

From an SROIQ (D) model I, obtain a SimpleRDF model by inheriting the universe and the
interpretation of individuals (then turned into resources). The interpretation P I of P gives

109
Note: This translation is not really useful. Consider the RDF-OWL-reduct construction instead.
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Pm, and EXTm is obtained by de-reifying, i.e.

EXTm(x) := {(y, z)|∃u.(u, x) ∈ predI , (u, y) ∈ subI , (u, z, ) ∈ objI}.

RDF→ SROIQ(D) is de�ned similarly. The theory of RDF built-ins is (after translation to
SROIQ (D)) added to any signature translation. This ensures that the model translation
can add the built-ins.

G.7. OWL → FOL

G.7.1. Translation of Signatures
Φ((C,R, I)) = (F, P ) with

� function symbols: F = {a(1)|a ∈ I}
� predicate symbols P = {A(1)|A ∈ C} ∪ {R(2)|R ∈ R}

G.7.2. Translation of Sentences
Concepts are translated as follows:

� αx(A) = A(x)

� αx(¬C) = ¬αx(C)

� αx(C uD) = αx(C) ∧ αx(D)

� αx(C tD) = αx(C) ∨ αx(D)

� αx(∃R.C) = ∃y.(R(x, y) ∧ αy(C))

� αx(∃U.C) = ∃y.αy(C)

� αx(∀R.C) = ∀y.(R(x, y)→ αy(C))

� αx(∀U.C) = ∀y.αy(C)

� αx(∃R.Self) = R(x, x)

� αx(≤ nR.C) = ∀y1, . . . , yn+1.
∧
i=1,...,n+1(R(x, yi) ∧ αyi(C))→

∨
1≤i<j≤n+1 yi = yj

� αx(≥ nR.C) = ∃y1, . . . , yn.
∧
i=1,...,n(R(x, yi) ∧ αyi(C)) ∧

∧
1≤i<j≤n yi 6= yj

� αx({a1, . . . an}) = (x = a1 ∨ . . . ∨ x = an)

For inverse roles R−, R−(x, y) has to be replaced by R(y, x), e.g.

αx(∃R−.C) = ∃y.(R(y, x) ∧ αy(C))

This rule also applies below.
Sentences are translated as follows:

� αΣ(C v D) = ∀x. (αx(C)→ αx(D))

� αΣ(a : C) = αx(C)[a/x]1

� αΣ(R(a, b)) = R(a, b)

� αΣ(R v S) = ∀x, y.R(x, y)→ S(x, y)

1Replace x by a.
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� αΣ(R1; . . . ;Rn v R) =
∀x, y.(∃z1, . . . zn−1.R1(x, z1) ∧R2(z1, z2) ∧ . . . ∧Rn(zn−1, y))→ R(x, y)

� αΣ(Dis(R1, R2)) = ¬∃x, y.R1(x, y) ∧R2(x, y)

� αΣ(Ref(R)) = ∀x.R(x, x)

� αΣ(Irr(R)) = ∀x.¬R(x, x)

� αΣ(Asy(R)) = ∀x, y.R(x, y)→ ¬R(y, x)

� αΣ(Tra(R)) = ∀x, y, z.R(x, y) ∧R(y, z)→ R(x, z)

G.7.3. Translation of Models
� For M ′ ∈ ModFOL(ΦΣ) de�ne βΣ(M ′) := (∆, ·I) with ∆ = |M ′| and AI = M ′A, a

I =
M ′a, R

I = M ′R.

Proposition 11 CI =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= αx(C)

}
Proof. By Induction over the structure of C.

� AI = M ′A =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= A(x)

}
� (¬C)I = ∆\CI =I.H. ∆\{m ∈M ′Thing|M ′+{x 7→ m} |= αx(C)} = {m ∈M ′Thing|M ′+
{x 7→ m} |= ¬αx(C)}

2
The satisfaction condition holds as well.

G.8. OWL → CL
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H. Annex (informative): Extended
Logic Graph

This annex extends the graph of logics and translations given in annex G by a list of OMS
language whose conformance with DOL will be established through the registry. The graph
is shown in Figure H.1. Its nodes are included in the following list of OMS languages and
pro�les (in addition to those mentioned in annex G):

� PL (propositional logic)

� SimpleRDF (RDF triples without a reserved vocabulary)

� OBOOWL and OBO1.4

� RIF (Rule Interchange Format)

� EER (Enhanced Entity-Relationship Diagrams)

� Datalog

� ORM (object role modeling)

� the meta model of schema.org

� UML (Uni�ed Modelling Language), with possibly di�erent logics according to di�erent
UML semantics

� SKOS (Simple Knowledge Organization System )

� FOL= (untyped �rst-order logic, as used for the TPTP format)

� F-logic

� CASL (Common Algebraic Speci�cation Language)

The actual translations are speci�ed in [35].
110 Note(110)

110
Note: TODO: Provide linear syntax here (as in the paper). TM: what do you mean by this?
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CL

PL

OWL

FOL=

OBOOWL

EL QL RL

F-logic

bRDF

sublogique

simultaneously exact and 
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

OBO 1.4

Figure H.1.: Translations between conforming OMS languages (extended)
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I. Annex (informative): Institutional
semantics

Note that the institute-based semantics for DOL does not cover SYMBOL-MAPs, combinations
and the construct monomorphic. The institutional semantics will provide a mechanism
for giving a semantics to the full distributed ontology, modeling and speci�cation language
(DOL).
Institutions generalise institute to arbitary signature mappings (called signature mor-

phisms) between signatures.

De�nition 12 An institution [12] is a quadruple I = (Sign,Sen,Mod, |=) consisting of
the following:

� a category Sign of signatures and signature morphisms,

� a functor Sen : Sign−→Set1 giving, for each signature Σ, the set of sentences Sen(Σ),
and for each signature morphism σ : Σ → Σ′, the sentence translation map Sen(σ) :
Sen(Σ)→ Sen(Σ′), where often Sen(σ)(ϕ) is written as σ(ϕ),

� a functor Mod : Signop → Cat2 giving, for each signature Σ, the category of models
Mod(Σ), and for each signature morphism σ : Σ−→Σ′, the reduct functor Mod(σ) :
Mod(Σ′) → Mod(Σ), where often Mod(σ)(M ′) is written as M ′ �σ, and M ′ �σ is
called the σ-reduct of M ′, while M ′ is called a σ-expansion of M ′�σ,

� a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,
such that for each σ : Σ−→Σ′ in Sign the following satisfaction condition holds:

(?) M ′ |=Σ′ σ(ϕ) i� M ′�σ|=Σ ϕ

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), expressing that truth is invariant under change
of notation and context. 2

De�nition 13 (Propositional Logic) The institution Prop is like the institute Prop.
Signature morphisms are functions σ : Σ1 → Σ2. The reduct of a Σ2-model M2 along
σ : Σ1 → Σ2 is the Σ1-model given by the composition M2 ◦ σ.

De�nition 14 (Common Logic - CL) The institution of Common Logic (CL) is like the
institute. A CL signature morphism consists of two maps between the sets of names and of
sequence markers, such that the property of being a discourse name is preserved and re�ected.3

Model reducts leave UR, UD, rel and fun untouched, while int and seq are composed with the
appropriate signature morphism component.

1Set is the category having all small sets as objects and functions as arrows.
2Cat is the category of categories and functors. Strictly speaking, Cat is not a category but only a
so-called quasicategory, which is a category that lives in a higher set-theoretic universe.

3That is, a name is a discourse name if and only if its image under the signature morphism is.
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Institute comorphisms can be generalised to institution comorphisms, see [14].

De�nition 15 (Institution Comorphism) Given two institutions I and J with I = (SignI ,
ModI , SenI , |=I) and J = (SignJ ,ModJ , SenJ , |=J), an institution comorphism from I to J
consists of a functor Φ : SignI −→ SignJ , and natural transformations β : ModJ ◦Φ =⇒ ModI

and α : SenI =⇒ SenJ ◦ Φ, such that

M ′ |=J
Φ(Σ) αΣ(ϕ)⇔ βΣ(M ′) |=I

Σ ϕ.

holds, called the satisfaction condition.

Here, Φ(Σ) is the translation of signature Σ from institution I to institution J , αΣ(ϕ) is the
translation of the Σ-sentence ϕ to a Φ(Σ)-sentence, and βΣ(M ′) is the translation (or perhaps
better: reduction) of the Φ(Σ)-model M ′ to a Σ-model.
Institute morphisms can be generalised to institution morphisms.

De�nition 16 (Institution Morphism) Given two institutions I and J with I = (SignI ,
ModI , SenI , |=I) and J = (SignJ ,ModJ , SenJ , |=J), an institution morphism from I to J
consists of a functor Φ : SignI −→ SignJ , and natural transformations β : ModI =⇒ ModJ ◦Φ
and α : SenJ ◦ Φ =⇒ SenI , such that

M |=I
Σ αΣ(ϕ)⇔ βΦ(Σ)(M) |=J

Φ(Σ) ϕ.

holds, called the satisfaction condition.

An institution-based heterogeneous logical environment is like an institute-based
one, execpt that institutions (institution morphisms, institution comorphisms) are used in
place of institutes (institute morphisms, institute comorphisms).
The full DOL language can be interpreted over an arbitrary institution-based heterogeneous

logical environment. [Details to be given.]
We will give (as normative annexes) one such environment. These will de�ne the �default

translations� that we assume.
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J. Annex (informative): Example
Uses of all DOL Constructs

111 Note(111)

112

Top-level declarations in distributed OMSs

Top-level declaration Examples

language IRI Alignments, Publications

logic IRI Alignments, Mereology

serialization IRI Alignments, Mereology

Pre�xMap Mereology

ontology IRI = Onto end Alignments, Mereology

ontology IRI = %mcons Onto end Mereology

interpretation IRI : Onto to Onto = Symbol |-> Symbol ... Mereology

interpretation IRI : Onto to Onto = %cons Symbol |-> Symbol ...

interpretation IRI : Onto to Onto = translation IRI Mereology

equivalence IRI : Onto <-> Onto = Onto end Algebra

module IRI : Onto of Onto for Symbols

module IRI %ccons : Onto of Onto for Symbols

alignment IRI : Onto to Onto end

alignment IRI 1 : Onto to Onto end

alignment IRI ? : Onto to Onto end

alignment IRI + : Onto to Onto end

alignment IRI * : Onto to Onto end

alignment IRI : Onto to Onto = Correspondences Alignments

Note(112)

111
Note: the uses cases in the RFP should be reused and worked into DOL examples

112
Note: Q-AUT: Should we have another column here that refers to the abstract syntax?
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OMSs

Ontology notation Examples

BasicOnto Alignments, Mereology

IRI Alignments, Mereology

IRI %( IRI )%

minimize { Onto } BlocksWithCircumscription

ONTO minimize Symbols var Symbols BlocksWithCircumscription

Onto with Symbol |-> Symbol ... Alignments

Onto with translation IRI Mereology

Onto with translation IRI : IRI → IRI

Onto with translation IRI → IRI

Onto with translation → IRI

Onto hide SymbolItems Algebra

Onto reveal Symbols

Onto reveal Symbol |-> Symbol ...

Onto hide along IRI

Onto hide along IRI : IRI → IRI

Onto hide along IRI → IRI

Onto hide along → IRI

Onto approximate with IRI

Onto approximate in IRI with IRI

Onto approximate in IRI

Onto and Onto

Onto then Onto Mereology

Onto then %ccons Onto

Onto then %ccons %( IRI )% Onto

Onto then %mcons Onto

Onto then %mono Onto

Onto then %wdef Onto

Onto then %def Onto

Onto then %implied Onto BlocksWithCircumscription

logic IRI : Onto

language IRI : Onto

serialization IRI : Onto

Onto bridge Translation Onto Publications

combine CombinedElements Alignments, Publications

combine CombinedElements excluding IRIs

J.1. Mereology: Distributed and Heterogeneous
Ontologies

113 Note(113)

113
Note: Q-AUT: In the TKE paper we made the name of the propositional logic ontology syntax explicit.
The propositional logic listing now leaves us with a problem: neither is propositional logic specified as
DOL-conformant, nor is Hets’ CASL-like syntax, nor is anything of this intended to ever be normative.
TM: hence either leave it out, or make propositional logic normative. What about the examples in
OWL+CL develop during the Ontology Summit Hackathon?
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%prefix( : <http://www.example.org/mereology#>
owl: <http://www.w3.org/2002/07/owl#>
log: <http://purl.net/dol/logic/> %% descriptions of logics ...
trans: <http://purl.net/dol/translations/> )% %% ... and translations

distributed OMS Mereology

logic log:Propositional syntax ser:Prop/Hets %% non-standard serialization built into Hets
ontology Taxonomy = %mcons %% basic taxonomic information about mereology reused from DOLCE

props PT, T, S, AR, PD
. S ∨ T ∨ AR ∨ PD −→ PT

%% PT is the top concept
. S ∧ T −→ ⊥ %% PD, S, T, AR are pairwise disjoint
. T ∧ AR −→ ⊥

%% and so on
end

language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester
%% OWL Manchester syntax
ontology BasicParthood = %% Parthood in SROIQ, as far as easily expressible

Class: ParticularCategory SubClassOf: Particular
%% omitted similar declarations of the other classes

DisjointUnionOf: SpaceRegion, TimeInterval, AbstractRegion, Perdurant
%% pairwise disjointness more compact thanks to an OWL built-in

ObjectProperty: isPartOf Characteristics: Transitive
ObjectProperty: isProperPartOf Characteristics: Asymmetric SubPropertyOf: isPartOf
Class: Atom EquivalentTo: inverse isProperPartOf only owl:Nothing

end %% an atom has no proper parts

interpretation TaxonomyToParthood : Taxonomy to BasicParthood =
translation trans:PropositionalToSROIQ, %% translate the logic, then rename the entities
PT 7→ Particular, S 7→ SpaceRegion, T 7→ TimeInterval, A 7→ AbstractRegion, %[ and so on ]%

logic log:CommonLogic syntax ser:CommonLogic/CLIF
%% syntax: the Lisp-like CLIF dialect of Common Logic

ontology ClassicalExtensionalParthood =
BasicParthood with translation trans:SROIQtoCL

%% import the OWL ontology from above, translate it to Common Logic, then extend it there:
then

. (forall (X) (if (or (= X S) (= X T) (= X AR) (= X PD))
(forall (x y z) (if (and (X x) (X y) (X z))

(and
%% now list all the axioms

(if (and (isPartOf x y) (isPartOf y x)) (= x y))
%% antisymmetry

(if (and (isProperPartOf x y) (isProperPartOf y z)) (isProperPartOf x z))
%% transitivity; can’t be expressed in OWL together with asymmetry

(iff (overlaps x y) (exists (pt) (and (isPartOf pt x) (isPartOf pt y))))
(iff (isAtomicPartOf x y) (and (isPartOf x y) (Atom x)))
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(iff (sum z x y)
(forall (w) (iff (overlaps w z) (and (overlaps w x) (overlaps w y)))))

(exists (s) (sum s x y))
%% existence of the sum

)))))
. (forall (Set a) (iff (fusion Set a)

%% definition of fusion
(forall (b) (iff (overlaps b a)

(exists (c) (and (Set c) (overlaps c a)))))))
}

J.2. Blocks World: Minimization
114 Note(114)

distributed OMS BlocksWithCircumscription
logic log:OWL

ontology Blocks =
%% FIXED PART
Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

%% B1 and B2 are different blocks
then

%% CIRCUMSCRIBED PART
minimize {

Class: Abnormal
Individual: B1 Types: Abnormal

%% B1 is abnormal
}

then
%% VARYING PART
Class: Ontable
Class: BlockNotAbnormal EquivalentTo: Block and not Abnormal SubClassOf: Ontable

%% Normally, a block is on the table
then %implied
Individual: B2 Types: Ontable

%% B2 is on the table
end

ToDo
To Do: Instead of Blocks World, perhaps we could specify an ontology that uses inheritance

networks with exceptions, and then use circumscription to axiomatize that ontology.

ontology Blocks_Alternative =

114
Note: Q-AUT: Here we need the prefixes for registry entries (e.g. logics) once more; they should
be reused across examples. Or we need to specify a mechanism that gets rid of these pre-
fixes altogether. @TM, could you please comment on my specification enhancement request
http://trac.informatik.uni-bremen.de:8080/hets/ticket/1020#comment:33?
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Class: Block
Class: Abnormal
Individual: B1 Types: Block, Abnormal
Individual: B2 Types: Block DifferentFrom: B1

%% B1 and B2 are different blocks
%% B1 is abnormal

Class: Ontable
Class: BlockNotAbnormal EquivalentTo: Block and not Abnormal SubClassOf: Ontable

%% Normally, a block is on the table
minimize Abnormal var Ontable, BlockNotAbnormal

then %implied
Individual: B2 Types: Ontable

%% B2 is on the table
end

J.2.1. Alignments

%prefix( : <http://www.example.org/alignment#>
owl <http://www.w3.org/2002/07/owl#>
log <http://purl.net/dol/logic/> %% descriptions of logics ...
trans <http://purl.net/dol/translations/> )% %% ... and translations

distributed OMS Alignments

language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester

alignment Alignment1 : { Class: Woman } to { Class: Person } =
Woman < Person

end

ontology AlignedOntology1 =
combine Alignment1

end

ontology Onto1 =
Class: Person
Class: Woman SubClassOf: Person
Class: Bank

end

ontology Onto2 =
Class: HumanBeing
Class: Woman SubClassOf: HumanBeing
Class: Bank

end
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alignment VAlignment : Onto1 to Onto2 =
Person = HumanBeing,
Woman = Woman

end

ontology VAlignedOntology =
combine 1 : Onto1, 2 : Onto2, VAlignment
%% 1:Person is identified with 2:HumanBeing
%% 1:Woman is identified with 2:Woman
%% 1:Bank and 2:Bank are kept distinct

end

ontology VAlignedOntologyRenamed =
VAlignedOntology with 1:Bank |-> RiverBank, 2:Bank |-> FinancialBank

end

J.3. Distributed Description Logics

%prefix( : <http://www.example.org/mereology#>
owl <http://www.w3.org/2002/07/owl#>
log <http://purl.net/dol/logic/> %% descriptions of logics ...
trans <http://purl.net/dol/translations/> )% %% ... and translations

distributed OMS Publications

language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester

ontology Publications1 =
Class: Publication
Class: Article SubClassOf: Publication
Class: InBook SubClassOf: Publication
Class: Thesis SubClassOf: Publication
Class: MasterThesis SubClassOf: Thesis
Class: PhDThesis SubClassOf: Thesis

end

ontology Publications2 =
Class: Thing
Class: Article SubClassOf: Thing
Class: BookArticle SubClassOf: Thing
Class: Publication SubClassOf: Thing
Class: Thesis SubClassOf: Thing

end

ontology Publications_Combined =
combine

1 : Publications1 with translation OWL2MS-OWL,
2 : Publications2 with translation OWL2MS-OWL
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%% implicitly: Article 7→ 1:Article ...
%% Article 7→ 2:Article ...

bridge with translation MS-OWL2DDL
%% implicitly added my translation MS-OWL2DDL: binary relation providing the bridge

1:Publication
v−→ 2:Publication

1:PhdThesis
v−→ 2:Thesis

1:InBook
v−→ 2:BookArticle

1:Article
v−→ 2:Article

1:Article
w−→ 2:Article

end

ontology Publications_Extended =
Publications
then
bridge with translation DDL2-ECO

%% turns implicit domain-relation into default relation ’D’
%% add E-connection style bridge rules on top

end

%% Note: unfinished...
%% add second spec following example from AI journal paper on E-connections,
%% page 22: three different bridge relations between two ontologies; first DDL
%% modelling, translation to ECO with default relation, renaming and extension
%% in ECO style.

distributed OMS Market

language lang:OWL2 logic log:SROIQ syntax ser:OWL2/Manchester
ontology Purchases =
combine

1 : { Class: PurchaseOrder },
2 : { ObjectProperty: Buyer

ObjectProperty: Good
ObjectProperty: BoughtBy }

bridge with translation OWL2DDLwithRoles
1:PurchaseOrder -into-> 2:BoughtBy

%% means in FOL: forall x 1PurchaseOrder(x) -> forall yz CR12(x,y,z) -> 2BoughtBy(y,z)
end

J.3.1. Algebra

%prefix( : <http://www.example.org/alignment#>
owl <http://www.w3.org/2002/07/owl#>
log <http://purl.net/dol/logic/> %% descriptions of logics ...
trans <http://purl.net/dol/translations/> )% %% ... and translations
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distributed OMS Algebra

logic log:CommonLogic syntax ser:CommonLogic/CLIF

ontology implicit_group =
(forall (x y z)

(= (op x (op y z)) (op (op x y) z)))
(exists (e)

(forall (x)
(and (= x (op e x))

(= x (op x e)))))
(forall (x)

(exists (y)
(and (= x (op x (op x y)))

(= x (op x (op y x))))))
end

ontology explicit_group =
(forall (x y z)

(= (op x (op y z)) (op (op x y) z)))
(forall (x) (and (= x (op e x))

(= x (op x e)))))
(forall (x)

(and (= x (op x (op x (inv x))))
(= x (op x (op (inv x) x))))))

end

equivalence groups_equiv : implicit_group <-> { explicit_group hide e, inv }
end
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K. Annex (informative): Use cases
This annex sketches scenarios that outline how DOL is intended to be applied. For each
scenario, we list its status of implementation, the DOL features it makes use of, and provide a
brief description.

K.1. Generating multilingual labels for menus in a
user interface

Status exists (but not yet DOL-based)

Features Aligning (multiple OWL ontologies), Annotation

DO-ROAM (Data and Ontology driven Route-finding Of Activity-oriented Mobility1) is a web
service with an interactive frontend that extends OpenStreetMap by an ontology-based search
for located activities and opening hours [8]. The service is driven by a set of different OWL
ontologies that have been aligned to each other using the Falcon matching tool [24]. The user
interface of the DO-ROAM web frontend offers multilingual labels, which are maintained in
close connection to the underlying ontologies.

Porting DO-ROAM to DOL would enable the coherent representation of the aligned ontolo-
gies as one distributed OMS, and it would enable the maintenance of the user interface labels
as annotations inside the ontology.

K.2. Connecting devices of differing complexity in an
Ambient Assisted Living setting

Status core ontology (not DOL-based) and service environment exists – the DOL-based ex-
tensions not yet

Features Logical OMS mappings across different logics, connection to linked open datasets

Consider the following ambient assisted living (AAL) scenario:

Clara instructs her wheelchair to get her to the kitchen (next door to the living
room. For dinner, she would like to take a pizza from the freezer and bake it in
the oven. (Her diet is vegetarian.) Afterwards she needs to rest in bed.

Existing ontologies for ambient assisted living (e.g. the OpenAAL2 OWL ontology) cover the
core of these concepts; they provide at least classes (or generic superclasses) corresponding
to the concepts highlighted in bold. However, that does not cover the scenario completely:

1http://www.do-roam.org
2http://openaal.org
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• Some concepts (here: food and its properties, italicized) are not covered. There are
separate ontologies for that (such as the Pizza ontology3), whereas information about
concrete products (here: information about the concrete pizza in Clara’s oven) would
rather come from Linked Open Datasets than from formal ontologies.

• Not all concepts (here: space and time, underlined) are covered at the required level
of complexity. OpenAAL says that appointments have a date and that rooms can be
connected to each other, but not what exactly that means. Foundational ontologies and
spatial calculi, often formalized in first-order logic, cover space and time at the level of
complexity required by a central controller of an apartment and by an autonomously
navigating wheelchair.

• Thirdly, even description logic might be too complex for very simple devices involved
into the scenario, such as the kitchen light switch, for which propositional logic may be
sufficient.

Thus, an adequate formalization of this scenario has to be heterogeneous. For example, one
could imagine the following axioms:

light switch “light is switched on if and only if someone is in the room and it is dark out-
side” – this could be formalized in propositional logic as light_on ≡ person_in_room ∧
dark_outside.

freezer “a vegetarian pizza is a pizza whose toppings are all vegetarian” – this could be for-
malized in description logic as VegetarianPizza ≡ Pizza u ∀hasTopping.Vegetarian

wheelchair “two areas in a house (e.g. a working area in a room) are either the same, or inter-
secting, or bordering, or separated, or one is part of the other” – this could be formalized
as an RCC-style spatial calculus in first-order logic as

∀a1, a2. equal(a1, a2) Y overlapping(a1, a2) Y bordering(a1, a2) Y disconnected(a1, a2)
Ypart_of(a1, a2) Y part_of(a2, a1).

DOL would be capable of expressing all that within one distributed OMS of heterogeneous
ontologies arranged around an OWL core (here: the OpenAAL ontology), including logical OMS
mappings from OpenAAL to the other ontologies, as well as a re-declaration of a concrete pizza
product from a product dataset as an instance of the Pizza OWL class.

K.3. Interpreting the OWL formalization of the DOLCE
foundational ontology in First-order logic

Status potential use case

Features Logical OMS mappings

DOLCE is a foundational ontology that has primarily been formalized in the first-order logic
ontology language KIF (a predecessor of Common Logic), but also in OWL (“DOLCE Lite”)
[32]. This ‘OWLized’ version was targeting use in semantic web services and domain ontology
interoperability, and to provide the generic categories and relationships to aid domain ontology
development. DOLCE has been used also for semantic middleware, and in OWL-formalised

3This is not a fully comprehensive food ontology, but rather a well-known sample OWL ontology;
cf. http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
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ontologies of neuroimaging, computing, ecology, and data mining and optimization. Given
the differences in expressivity, DOLCE Lite had to simplify certain notions. For example, the
DOLCE Lite formalization of “temporary parthood” (something is part of something else at a
certain point or interval in time) omits any information about the time, as OWL only supports bi-
nary predicates (a.k.a. “properties”). That leaves ambiguities for modeling a view from DOLCE
Lite to the first-order DOLCE, as such a view would have to reintroduce the third (temporal)
component of such predicates:

• Should a relation asserted in terms of DOLCE Lite be assumed to hold for all possible
points/intervals in time, i.e. should it be universally quantified?

• Or should such a relation be assumed to hold for some points/intervals in time, i.e. should
it be existentially quantified?

• Or should a concrete value for the temporal component be assumed, e.g. “0” or “now”?

DOL would support the formalization of all of these views and, given suitable consistency
checking tools, the analyzation of whether any such view would satisfy all further axioms that
the first-order DOLCE states about temporal parthood.

K.4. Extending the OWL Time ontology to a more
comprehensive coverage of time

Status potential use case

Features Logical OMS mappings

The OWL Time ontology4 covers temporal concepts such as instants and intervals and has
been designed for describing the temporal content of Web pages and the temporal properties
of Web services. While OWL is suitable for these intended applications, only a first-order
axiomatization is capable of faithfully capturing all relevant notions, such as the trichotomy of
the “before” relation: One instant is either before another one, or at the same time, or after.
Moreover, a relationship between facts expressed in terms of instants and facts expressed in
terms of intervals (both of which is, independently, possible in OWL), can only be established
via first-order logic, e.g. by declaring an interval of length zero equivalent to an instant.

A separate first-order axiomatization of OWL Time exists [[22],[37]]. DOL would instead pro-
vide the mechanism of modeling OWL Time as one coherent heterogeneous ontology, using
OWL and, e.g., Common Logic.115 For the temporal description logic DLRUS for knowledge Note(115)
bases and logic-based temporal conceptual data modelling [[1],[2]]; DLRUS combines the
propositional temporal logic with the Since and Until operators and the (non-temporal) descrip-
tion logic DLR and can be regarded as an expressive fragment of the first-order temporal logic
Lsince,until. Within DOL, this would enable one to have ‘lightweight’ time aspects with OWL
Time, which are then properly formalised with DLRUS or a leaner variant TDL-Lite [[4]], where
notions such as (some time) “before” are given a formal semantics of the intended meaning that
the plain OWL Times human-readable object property does not have. The latter, then, would
enable the modeller to represent the meaning—hence, restrict the possible models—and check
the consistency of the temporal constraints and so-called ‘evolution constraints’ in the ontology
(evolution constraints constrain membership of an object or an individual relation to a concept

4http://www.w3.org/TR/2006/WD-owl-time-20060927/
115

Note: This is also a use case for multiple namespaces: OWL supports namespaces, CL doesn’t.
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or relationship over time). For instance, that each divorcee must have been a participant in a
marriage before, that boarding only may occur after checking in, and that any employee must
obtain a salary increase after two years of employment. It also can be used to differentiate be-
tween essential and immutable parthood, therewith being precise in the ontology about, e.g.,
the distinction how a human brain is part of a human (humans cannot live without it), versus
how a hand is part of a human (humans can live without it), versus how the hand is part of, say,
a boxer, which is essential to the boxer but only for has long as he is a boxer [[3]].

K.5. Metadata in COLORE (Common Logic
Repository)

Status exists (but not yet DOL-based)
Features Annotation, Metadata vocabularies

COLORE, the Common Logic Repository5 is an open repository of more than 150 ontologies
as of December 2011, all formalized in Common Logic. COLORE stores metadata about its
ontologies, which are represented using a custom XML schema that covers the following as-
pects6, without specifying a formal semantics for them:
module provenance author, date, version, description, keyword, parent ontology7

axiom source provenance name, author, year8

direct relations maps (signature morphisms), definitional extension, conservative extension,
inconsistency between ontologies, imports, relative interpretation, faithful interpretation,
definable equivalence

DOL provides built-in support for a subset of the “direct relations” and specifies a formal se-
mantics for them. In addition, it supports the implementation of the remainder of the COLORE
metadata vocabulary as an ontology, reusing suitable existing metadata vocabularies such as
OMV (cf. annex L), and it supports the implementation of one or multiple Common Logic on-
tologies plus their annotations as one coherent distributed OMS.

K.6. Extending OWL with datatypes defined in CASL
Status potential use case
Features ...

• OWL datatypes are in practice restricted to the XML Schema datatypes
• XML Schema can only specify the syntax of datatypes
• CASL can specify syntax (but not quite in the same way as XML Schema) and semantics

of datatypes
116 117 Note(116)

5http://stl.mie.utoronto.ca/colore/
6http://stl.mie.utoronto.ca/colore/metadata.html
7Note that this use of the term �module� in COLORE corresponds to the term structured OMS in
this OMG Speci�cation

8Note that this may cover any sentencs in the sense of this OMG Speci�cation
116

Note: TODO: ModuleRelDefn combined with approximation and RDF-based querying of annota-
tion/metadata dimensions
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Note(117)

117
Note: TODO: Maybe have an(other?) appendix that refers to the usage of DOL within ontology engi-
neering methodologies, or at least to some good practices of using DOL

87



L. Annex (informative): Annotation
Vocabularies

118 Note(118)

Table L.1.: Vocabularies recommended for annotating DOL OMSs
Vocabulary name Purpose ref.

DCMI Metadata Terms general-purpose and biographical metadata [6]
Ontology Metadata Vocabulary (OMV) ontology engineering metadata [21]

119 Note(119)

118
Note: Q-ALL: Or should this rather be normative?

119
Note: TODO: maybe mention: How do we use the ISO 12620 DCR for our extension of the OMV?
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