RIF: A Standard Rules Language for the Semantic Web

Jos de Bruijn

Faculty of Computer Science Free University of Bozen-Bolzano, Italy debruijn AT inf.unibz.it

Ontolog Conference Call – 26 June 2008

(Semantic) Web Languages (I)

Data Language

- Resource Description Framework (RDF)
 - subject predicate object
 - a rdf:type c, a p b

Ontology Languages

- RDF Schema
 - Semantically extends RDF, defining semantics for subClassOf, subPropertyOf, domain, range
- OWL Full
 - Semantically extends RDFS, defining semantics for intersectionOf, unionOf, etc.
- OWL Lite/DL
 - Syntactical subsets of RDF, different semantics
 - Semantics defined in terms of abstract syntax

(Semantic) Web Languages (II)

Web Rule Language

- ▶ Rule Interchange Format (RIF) BLD (Basic Logic Dialect)
 - Horn rules with equality for the Web
 - Not based on RDF or OWL

Rules, Ontologies, and Data

- RDF graphs as data sets for rules
- RDFS/OWL ontologies as data models for rules
- Rules as extension to RDFS or OWL ontologies
- Solution: define interoperation between RIF, RDF, and OWL by connecting their semantics

Syntax

Semantics

Embedding

Importing RDF/OWL

A RIF document (ruleset) R may reference (*Import*) RDF/OWL documents S_i :

Import(graphLocation profile)

- graphLocation: location of the RDF graph
- profile: how to interpret RDF graph (cf. entailment regime)
 - e.g., simple entailment, RDFS, OWL DL
 - Determines semantic notions to be used, model, satisfiability, entailment

A *RIF-RDF* combination is a tuple $C = \langle R, \{S_1, \ldots, S_n\} \rangle$ A *RIF-OWL DL* combination is a tuple $C = \langle R, \{O_1, \ldots, O_n\} \rangle$, where O_1, \ldots, O_n are OWL ontologies in abstract syntax form; *R* does not have variables in class/property positions.

Statements in RIF versus Statements in RDF/OWL

RDF/OWL symbol		RIF symbol	
IRI	<http:></http:>	IRI	"http:/"^^rif:iri
Literal w/o lan-	"abcde"	String	"abcde"^^xs:string
guage tag			
Literal w lan-	"abcde"@en	rif:text con-	"abcde@en"^^rif:text
guage tag		stant	
Typed literal	"1"^^xs:int	Constant	"1"^^xs:int
Blank node	_: x	Existential vari-	?x
		able (in rule	
		body)	

RDF/OWL statement		RIF statement	
RDF Triple	spo	Frame formula	s[p -> o]
OWL class	a type(C)	Frame	a[rdf:type -> C]
membership	- ())	-	F
	a value(p b)	Frame	a[p -> b]
value			

Example

```
Consider the RDF graph S:
ex:john ex:brotherOf _:x .
_:x ex:parentOf ex:mary .
```

```
And the ruleset R:
Forall ?x, ?y, ?z (?x[ex:uncleOf -> ?z] :-
And(?x[ex:brotherOf -> ?y] ?y[ex:parentOf -> ?z]))
```

From the combination $\langle R, \{S\} \rangle$ we can derive the frame formula ex:john[ex:uncleOf -> ex:mary]

But also the triple

```
ex:john ex:uncleOf ex:mary
```

Semantics of Combinations (I)

Three model theories: RIF, RDF, and OWL DL

- RDF model theory has several notions of *interpretation* (and satisfiability, entailment): simple, RDF, RDFS, D, OWL Full
- Semantics of combination accommodates all these notions; selection of notion based on *profile*
- Semantics of combination based on *connection* of model theories
 - RIF interpretations interpret rule sets
 - RDF interpretations interpret RDF graphs
 - OWL interpretations interpret OWL ontologies
 - Connection of model theories through *conditions* on interpretations

Semantics of Combinations (II)

- A common-rif-rdf-interpretation is a pair (I, I), where I is an RIF interpretation, I is an RDF interpretation, such that a number of conditions hold, e.g.:
 - Domains of interpretation are the same
 - Interpretation of IRIs and well-typed literals is the same
 - Interpretation of triples corresponds with interpretation of frame formulas
- ▶ (I, I) satisfies a combination $C = \langle R, \{S_1, ..., S_n\} \rangle$ if I satisfies R and I satisfies all $S_1, ..., S_n$
 - (I, I) rdfs-satisfies C if I is an rdfs-interpretation
 - ▶ (I, I) D-satisfies C if I is a D-interpretation
 - (I, I) OWL-Full-satisfies C if I is an OWL-Full-interpretation
- C entails a graph T if for every (I, I) that satisfies C, I satisfies T
- ► C entails a RIF condition formula φ if for every (I, I) that satisfies C, I satisfies φ

Embedding RIF-RDF combinations

- Simple, RDF, and RDFS entailment for combinations may be embedded into RIF
- Given a combination $C = \langle R, \{S_1, \dots, S_n\} \rangle$, RIF condition ϕ , and graph T
 - Embed S_i as sets of facts, Skolemizing blank nodes $(tr_R(S_i))$
 - ▶ Embed *R* as *R*
 - ► Axiomatize profile (*R^{simple}*, *R^{RDF}*, *R^{RDFS}*)
 - Embed ϕ as ϕ
 - Embed T as conjunction of frame formulas, with blank nodes as existentially quantified variables (tr_Q(t))
- Then,
 - C rdfs-entails ϕ iff $R \cup R^{RDFS} \cup tr_R(S_1) \cup \cdots \cup tr_R(S_n)$ entails ϕ and
 - ► C rdfs-entails T iff $R \cup R^{RDFS} \cup tr_R(S_1) \cup \cdots \cup tr_R(S_n)$ entails $tr_Q(T)$

Example

```
and R:
Forall ?x (?x[rdf:type -> ex:Student] :-
?x[ex:memberOf -> ex:studentCouncil]))
```

```
and the graph T:
_:x rdf:type ex:Person
```

Example (cont'd)

```
tr<sub>R</sub>(S):
    ex:john[ex:memberOf -> ex:studentCouncil]
    ex:Student[rdfs:subClassOf -> ex:Person]
R<sup>RDFS</sup> includes:
Forall ?x ?y ?z (?z[rdf:type -> ?y] :-
And (?x[rdfs:subClassOf -> ?y] ?z[rdf:type -> ?x])),
tr<sub>Q</sub>(T):
Exists ?x (?x[rdf:type -> ex:Person])
```

```
As expected, R \cup R^{RDFS} \cup tr_R(S) entails tr_Q(T)
```

Bibliography

- RIF Basic Logic Dialect, H. Boley, M. Kifer, eds. Latest version available at http://www.w3.org/TR/rif-bld/.
- RIF RDF and OWL compatibility, J. de Bruijn, ed. Latest version available at http://www.w3.org/TR/rif-rdf-owl/.
- RDF Semantics, P. Hayes, Editor. Latest version available at http://www.w3.org/TR/rdf-mt/.
- OWL Web Ontology Language Semantics and Abstract Syntax, P. F. Patel-Schneider, P. Hayes, I. Horrocks, Editors. Latest version available at http://www.w3.org/TR/owl-semantics/.