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Why bother standardizing geospatial terms?

1 Badly needed

I Basis for data & information integration and exchange in the earth
sciences (compare the goals of EarthCube)

I Supports other disciplines: much information has a spatial component

2 Many intuitive conceptualization, concepts, and relations, each of
which comes with various interpretations that slightly differ

I Conceptualizations: raster/grid- vs. vector- vs. graph/network-based,
discrete vs. continuous, flat vs. spherical, . . .

I Concepts: boundary, surface, curve, region, hole, water body, lake,
toponyms, . . .

I Relations: in contact with, is part of, contains, . . .
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The role of standards: reference + implementation guide

Reference that defines a reusable terminology with shared semantics

standardized terms

standardized definitions of the terms’ meanings

Expressive formal ontologies can help achieve both:

Terminology: concepts and relations in a logical language

Shared semantics: axioms that constrain the interpretation of the
terms and help disambiguate the terms

Ontologies are heavy vs. light analogous to reference manual vs. user guide

A reference ontology is necessarily heavy: complete, formal, rigorous

Implementation/user guide is usually light
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Current geospatial standards
ISO/OGC Simple Features, OGC GeoSPARQL, Spatial Schema
(ISO 19107), Ordnance Survey Spatial Relations, GML, hydro
ontologies (GWML, INSPIRE, SWEET)

Specified using UML, RDF Schema, or lightweight OWL (OWL-DL)
I Light: standardize the terms (vocabulary)
I Don’t formalize the terms’ meaning: not a formal reference
I Only the beginning of exploiting the benefits of ontologies for standards
I Even the expressive power of OWL-DL not fully exploited yet

Relations (between concepts) are less emphasized than concepts
I Relations tie concepts together: need relations to describe how certain

concepts relate to one another (incl. behaviour)
I OWL language is less expressive with respect to relations

Many concepts and relations are already formalized
I e.g. mereotopological relations (RCC and Egenhofer’s 9-intersections)

are included in GeoSPARQL, Simple Features, and Ordnance Survey
Spatial Relations, but neither use the known logical formalizations
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How can expressive ontologies help improve standards?

General idea:

1 Identify key concepts and relations (terminology)

2 Axiomatize them in an expressive logic (e.g. Common Logic)
I Identify primitive vs. definable concepts and relations
I Constrain primitive concepts/relations
I Define definable concepts/relations

3 Extract concept and relation hierarchies and verify
I Use automated theorem provers
I Verify consistency and that concepts and relations can be non-empty
I Extract, e.g., subclass and subproperty relationships
I Extract DisjointWIth and DisjointUnionOf conditions
I Essentially extract a lightweight ontology

Will use examples from current work on hydro ontology as examples
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Goal: Multiple consistent representations of a standard
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Goal: Multiple consistent representations of a standard
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Our work: Develop formally grounded hydro ontology

1 Rigorous formalization in Common Logic
2 Verification: assisted by first-order theorem provers; partly automated

I prove consistency
I prove coverage: exhaustiveness of concepts/relations
I prove intuitive intended relationships (‘theorems’)

3 Extract taxonomies to extend OWL version of DOLCE upper ontology
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Starting point: Basic elements of a hydro ontology

Develop a rigorous formalization of these concepts and relations in a
formal logic & extract a consistent lightweight vocabulary
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Basic elements of a reference hydro ontology: Analogy
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Water and physical bodies (Hahmann & Brodaric, 2012)

Define water bodies by their physical containers’ voids

Lake or River WB: in a hollow of the ground surface

Water Well WB: in a hollow below the ground surface

Aquifer WB: in gaps in the rock matter and in holes below the
ground surface
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Example axioms: Water and rock bodies

A WaterBody may only be constituted by water if it has constituents:

WB(x)→ NAPO(x) ∧ ∀y [DK 1(y , x)→Water(y)]

A RockBody is constituted by rock matter and only by rock matter:

RB(x) ≡ NAPO(x) ∧ ∃y [DK 1(y , x)] ∧ ∀y [DK 1(y , x)→ RockMatter(y)]

GS denotes a ground surface (not fully defined):

GS(gs)→ RPF (gs) ∧ ∃o[NAPO(o) ∧ hosts(o, gs)]

WB,RB,GS ,Water ,RockMatter . . . . . . . . . Domain theory (Hydrogeology)

NAPO,RPF ,DK 1, hosts . . . . . . . . . . . . . . . . . . . . . DOLCE concepts/relations
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Voids (Hahmann & Brodaric, 2012)

Holes vs. Gaps: based on whether the host is internally self-connected

Cavities vs. Tunnels vs. Depressions: based on the void’s opening

Opening to the outside vs. opening to other voids only
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Example axioms: Water and rock bodies (contd.)

Surface- vs. Ground-WaterBody:

SurfaceWB(wb)→WB(wb) ∧ ∃gs[hole(wb, gs) ∧ GS(gs)]

GroundWB(wb)→WB(wb) ∧ ∃rb, gs
[
RB(rb) ∧ hosts(rb, gs) ∧ GS(gs) ∧

r(wb) ⊆ voidspace(rb) ∧ ∀v [hole(rb, v)→ ¬PO(wb, v)]
]

A HydroRockBody consists of a RockBody and a GroundWaterBody with
the GroundWaterBody located in Voids of the RockBody:

HydroRockBody(aq)→ NAPO(aq) ∧ ∃rb,wb
[
r(aq) = r(rb) + r(wb) ∧

RB(rb) ∧ GroundWB(wb) ∧

r(wb) ⊆ con-voidspace(rb)
]

A Reservoir is the voidspace of some RockBody:

Reservoir(wr) ≡ V(wr) ∧ ∃rb[RB(rb) ∧ r(wr) = voidspace(rb)]
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DOLCE with voids – OWL version

Physical-Void (V)

+ void-host: NOT Physical-Void

Dependent-Place

Physical-Hole Physical-Gap

+void-host 1..*

hosts-v

+host-of-void
0..*

Relevant-Part

+host 1..*

hosts

+host-of 0..*

Non-Agentive-

Physical-Object

(NAPO)
(RPF) (DPF)

Feature
Amount-of-Matter Physical-Object

(POD)
(F)

(M)

DK1

0..* +constituent 1

DK1

0..*

 Physical-Endurant

(PED)

(Hole) (Gap)
Physical-HollowPhysical-TunnelPhysical-Cavity

(HOL)(CAV) (TUN)

Physical-CavernPhysical-External-
Hollow
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DOLCE with hydrogeology concepts – OWL version

Non-Agentive-

Physical-Object

(NAPO)

Dependent-Place
(DPF)

Relevant-Part
(RPF)

Feature
Amount-of-Matter Physical-Object

(POD)
(F)

(M)

 Physical-Endurant

(PED)

OrganicMatter

Soil

RockMatter

Water

RockBody

(WB)
WaterBody

HydroRockBody

(RB)

(SurfaceWB)
SurfaceWaterBody

(GroundWB)
GroundWaterBody

Aquifer AquitardAquiclude

(GS)
GroundSurface PhysicalVoid (V)

Reservoir
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Containment relations (Hahmann & Brodaric, 2013)

Relate voids, water bodies, and other physical bodies through
containment relations

AQ
CT

GWB

RM

SWB
Gaps

Hole

Rock

LB

RB

openly -surrounds-mat(RB, SWB) openly -surrounds-mat(RB,Rock)
hosts-v(RB,Hole) mat-inside(SWB,Hole)
mat-inside(Rock,Hole) openly -surrounds-mat(SWB,Rock)
materially -contains(AQ,GWB) materially -contains(AQ,RM)
encloses-mat(AQ,CT) hosts-v any(AQ,Gaps)
mat-inside(Gaps,GWB) mat-inside(Gaps,CT)
encloses-mat(GWB,CT)

Hahmann Next generation spatial standards October 17, 2013 15 / 22



Containment relations: Heavy approach first

Precise definitions based on topological-geometric containment
relations, physical constraints and DOLCE concepts:

fully -phys-contains(y , x) ↔ PED(x) ∧ PED(y) ∧ P(r(x), ch(y)) ∧[
¬mat(y)→ P(r(x), r(y))

]
Classify physical containment relations based on

1 whether container and containee are in a physical dependency
2 whether the container is a material or a void endurant

F inside (a void) vs. surrounded (by a material endurant)

3 whether the containee is a material or void endurant
4 other spatial relations: enclosure, contact, spatial parthood

The resulting “leaf” relations are exhaustive and pairwise disjoint
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Containment relations: Light version follows

materially-
contains(y,x)

mat(x) 

inside(x,y)
V(y) 

surrounds(y,x)
mat(y)

mat-inside(x,y)
mat(x)

void-inside(x,y)
V(x)

surrounds-mat(y,x)
mat(x)

surrounds-void(y,x)
V(x)

dep-contains(y,x)
 dep(x,y)

immaterially-
contains(y,x)

  V(x) 

encloses-
mat(y,x)

openly-
surrounds-

mat(y,x)

etc.

further 
refined

in HB12

hosts-v(y,x)
V(x) 

dep-mat-contains(y,x)
mat(y)

dep-immat-contains(y,x)
V(y)

incidentally-
surrounds-

mat(y,x)

encloses-
void(y,x)

openly-
surrounds-
void(y,x)

incidentally-
surrounds-
void(y,x)

mat-fills-
inside(x,y)

mat-splits-
inside(x,y)

...

n/a
mat(x)

det-contains(y,x)
   dep(x,y)

submat(x,y)
P(r(x),r(y)) 

fully-phys-contains(y,x)
P(r(x),ch(y))

mat(y)       P(r(x),r(y))

subvoid(x,y) 

Dependence

Container
(im)materiality

Containee
(im)materiality

Parthood EnclosureLocationParthood

Detachable containmentDependent containment

Taxonomy expressible in OWL using subproperty and DisjointWith

relationships; cannot express exhaustiveness in OWL
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Conclusions

Critical to ground any lightweight implementation representation
(“user guide”) in a formal reference (“technical specification”)

Formally grounds and disambiguates geospatial concepts

Serves as basis for (semi-)automated extraction of lightweight
versions (OWL, RDF) that can be used as terminological reference for
annotation or implementation in a triple store

Formal specification helps automated verification

Standards should be flexible in two ways

1 Amendable to various applications or domains, i.e., not too specific

2 Offer various degrees of formality
I Most formal: for reference, verification, and heavyweight reasoning

I Least formal: as terminology for annotating data (‘Linked Data’)
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1) Formally grounded tiered standards
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2) Various degrees of formality
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Two general observations

Much work on upper ontologies, less on the middle layer
I upper ontologies can only be formalized to a certain degree

I narrow application-specific ontologies are often too tedious to formalize

I missing the middle layer: can be formally standardized
F specific enough but also not too many concepts and relations
F that’s the level where information integration and exchange happens

Relations are often still neglected: less understood?
I Relations define how concepts relate to one another
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multidim space XXX
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