#### Case Studies in Applying Semantics to Enterprise Systems

Dave McComb, Semantic Arts February 2011

#### Semantic Arts

 Small consulting firm, specializing in helping large organizations apply semantic technology to their enterprise architectures

# Semantic Arts' Clients



Washington State Department of Transportation

Harvard Pilgrim HealthCare













Office of Financial Management



### Sallie Mae

- Leading provider of student loans
- We built an Enterprise Ontology for them in early 2009.
- In late 2009 they had an opportunity to apply it...

# Getting a handle on complexity

| ributes |
|---------|
| 10,230  |
| 15,295  |
| 13,538  |
| 12,502  |
|         |

These are the number of distinctions being made in the current systems

1,535 51,565

# Sallie Mae Enterprise Model – May 2009



| Classes                  | 574  |
|--------------------------|------|
| <b>Object Properties</b> | 250  |
| Data Type Properties     | 38   |
| Total T-Box Axioms       | 1470 |

The original goals of the Sallie Mae Enterprise Semantic Model were to:

- Create formal business definitions of the principal concepts in use across the organization.
- Validate the model against existing data bases and interfaces, and start the process of formally describing the existing data using those enterprise definitions.
- Provide a basis for integrating structured and unstructured data.



# Class Comparison

Sub Ontology

Mostly in the loan subject area as more detail on loan servicing events was added.

March 2010

| Loans                             | 180 | 340  | servicing events<br>was added.   |
|-----------------------------------|-----|------|----------------------------------|
| Communication                     | 96  | 123  | was added.                       |
| Social Beings                     | 119 | 145  | Instance                         |
| Finance                           | 117 | 209  | taxonomies                       |
| Core Properties                   | 3   | 4    | were                             |
| Core Taxonomy                     | 99  | 284  | converted to                     |
| Identifiers                       | 21  | 56   |                                  |
| Gist                              | 130 | 129  | Many new                         |
| GistComp                          |     | 65   | classes were                     |
| Message Model                     |     | 134  | specific to the<br>Message Model |
| CLASS specific (FinTran<br>Codes) |     | 130  | class                            |
| All<br>9                          | 610 | 1284 | Total doubled                    |
| 7                                 |     |      |                                  |

May 2009

# Properties (Object/Datatype)

|     | SubOntology                                             | May 2009 | March 2010 |  |
|-----|---------------------------------------------------------|----------|------------|--|
|     | Loans                                                   | 43/1     | 61/0       |  |
|     | Communication                                           | 31/0     | 32/10      |  |
|     | Social Beings                                           | 46/8     | 49/7       |  |
|     | Finance                                                 | 35/0     | 31/1       |  |
|     | Core Properties                                         | 148/32   | 186/15     |  |
|     | Core Taxonomy                                           | 4/0      | 2/0        |  |
|     | Identifiers                                             | 2/1      | 2/2        |  |
| lot | of the net increase was in gist.                        | 75/11    | 119/20     |  |
|     | GistComp                                                |          | 42/0       |  |
|     | Message Model                                           |          | 26/2       |  |
|     | CLASS specific (FinTran                                 |          | 15/0       |  |
|     | isingly the total number of<br>erties went up far less. | 225/44   | 317/36     |  |

A

S p

#### Toolset



# The Projection becomes the XSD Message Definition



### Progress/Data Extend (DXSI)



13

Toolset

#### Full loop about 1-3 hours



#### Net Result

- New outsourced servicing system was integrated into Sallie Mae's environment.
- One set of SOA messages handles both servicing systems.
- The rationalization of the messages was made possible by the enterprise ontology.
- Changes could be rapidly incorporated into the ontology and their impact reflected in messages within hours.



Procter & Gamble – Harvesting Knowledge from Researchers

- Large consumer products company
- Looking for ways to integrate research findings across disciplines
  - Over 10,000 researchers in nearly 100 disciplines
  - Each discipline has its own language
  - Traditional key word search not useful when searching across domains
- Problem compounded by departure of many key researchers (retirement, re-organization, etc.)

#### Work Performed

- We built an Enterprise Ontology for the R&D domain.
- In parallel with interviewing retiring researchers from two divisions: Duracell and Oral-B.

### Structure of the model(s)



# How the ontologies are layered

|                          | Gist | P&G General<br>R&D | With Dura &<br>OralB |
|--------------------------|------|--------------------|----------------------|
| Classes                  | 233  | 410 (added 177)    | 593 (added 183)      |
| <b>Object Properties</b> | 170  | 192 (added 22)     | 196 (added 4)        |
| Data Properties          | 20   | 20                 | 25 (added 5)         |

# Upper Ontology Coverage

- Of the nearly 600 classes in the R&D ontology
- Only 2 were not derived from gist:
  - Brand
  - Invention
- Most R&D data is findable without needing to know the specialized dialect of each subdomain.

#### Results

- Semantic Wiki built based on ontology
- Two additional domains have been modeled (feminine care and baby care) and both reinforce the original abstractions
- Additional domains planned for this year





# LexisNexis

- Leading supplier of legal research
- Currently legal annotation is done by hand, an "editorial" process, or through scripts that hard automate the classification process.
- They recognize that they are running to the limits of this approach, at the same time that demand for more appropriate retrieval is climbing.

# LexisNexis

- They have launched a major initiative to convert their systems to be semantically based.
- Raw text will be processed to extract not only entities but relationships as well.
- This extracted information will be conformed to the new Enterprise Ontology.

#### **Current Situation**

Content Complexity

Content Systems Complexity



#### Nine types of models (or schemas)



# Results (still early)

Big win will be "deep modeling" of their content (what a law or a court decision means, beyond how is it structured).

### Summary

- Three different case studies of portions of Enterprise Architectures being rebuilt based on Enterprise Ontologies
- Each was built from a common upper ontology (gist)