An Engineering Approach to Ontology Engineering in Complex Environments: the role of Foundational Theories and Ontological Patterns

Giancarlo Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO), http://nemo.inf.ufes.br/

Federal University of Espirito Santo (UFES), Brazil gguizzardi@inf.ufes.br

Complex Engineered Systems

- Engineered systems are often characterized by concurrently developed, autonomous and heterogeneous components.
- One key aspect in these complex systems is *Semantic Interoperability*.

Ontology

- Reference Model of Consensus to support different types of Semantic Interoperability Tasks
- Explicit, declarative and machine processable artifact coding a domain model to enable efficient automated reasoning

A Software Engineering view...

Ontology as Reference Conceptual Models

- Ontologies as reference conceptual models should be constructed in manners that maximize:
 - the expressivity in capturing fundamental aspects of the underlying domain and in making explicit the underlying ontological commitments.
 - conceptual clarity (or pragmatic efficiency) to afford the tasks of communication, domain understanding, problem-solving and meaning negotiation among human users.

Transported to Ontology Engineering...

Ontology-Driven Conceptual Modeling

 We cannot eschew truly ontological questions, i.e., conceptual modeling should be supported by Formal Ontological theories (e.g., identity, dependence, classification and taxonomic structures, composition, causality, intentionality, systems, commitments and claims).

Ontological Patterns

- Besides enriching the modeling primitives of conceptual modeling languages, foundational theories can in the identification of both *Modeling Patterns* and *Analysis Patterns*
- Empirical Knowledge of recurrent problems that arise in practice can help us identify *Problem Patterns*
- Knowledge of the Design Space and Codification Environments can help us to identify *Codification* and Transformation Patterns

Modeling Language Federation

- Despite the "vertical complexity" of having several codification models related to the same (set of) conceptual models, in complex engineered systems (e.g., organizations) there is also typically "horizontal complexity"
- We have the case of multiple conceptual modeling languages capturing complementary viewpoints of the same underlying system

Summary

- We need different representation and analysis approaches with different characteristics for different phases on analysis and design of complex (ontology-based) engineered systems
- We need a conceptual modeling approach supported by well-founded ontological theories (in the true ontological sense)
- We need a mature body of knowledge organized as Ontological Patterns (Modeling Patterns, Analysis Patterns, Codification and Transformation Patterns, Problem Patterns)

SIG on Ontologies and Conceptual Modeling (<u>http://ontolog.cim3.net/mailman/listinfo/</u> <u>iaoa-conceptual-modeling</u>)

(co-chaired with

Yair Wand – University of British Columbia, Canada and Oscar Pastor - Universidad Politecnica de Valencia, Spain)