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Introduction

A methodology for the development and verification of expressive
ontologies

Addresses the following extrinsic aspects of ontology evaluation:

Requirements and their verification
How evaluation can be used to revise requirements
How evaluation can be used to correct an ontology
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Motivation

Existing lifecycle methodologies for ontology development do not
adequately address challenges that arise with the development of
ontologies in full First-Order Logic (FOL), specifically:

Expressiveness of requirements

Consistency-checking is not enough!

Verification guidance required

How do we continue when we are unable to verify a requirement?
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Challenges Addressed

We proposed a development methodology for the design and verification of
expressive ontologies:

RequirementsDesign

Verification

Tuning Application
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The BoxWorld Ontology

Used to describe 2-dimensional and 3-dimensional shapes

Applications in computer vision, manufacturing (e.g. sheet metal)

Relations:

point(p)
edge(e)
surface(s)
part(p, e)
meet(e1, e2, p)

Consider Tsurface , fragment of TBoxWorld describing only 2-dimensional
shapes
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Prototype Design

Requirements Prototype Design

Iterative Refinement

Figure: Developing the ontology and our understanding of its requirements

Prototype Design: draft axioms (from scratch, or via reuse)

Model Exploration: generate and review resulting models

Undirected
Directed

Iterative Refinement: revise prototype and / or informal requirements
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Requirements: Intended Models

From informal requirements to semantic requirements
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Figure: Intended and unintended models
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Requirements: Intended Models

The relationship between the intended models for an ontology and the
actual models of its axioms, reproduced from Guarino (2009)

Conceptualization C

Logical language L

Models

MD(L)

Intended models

IK(L)

Ontology models

OK

Unintended models

Omitted models
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Requirements: Intended Models

Definition

Semantic requirements specify conditions on the intended models for the
ontology, and/or models of the ontology’s axioms.

There are two types of such conditions for semantic correctness:

M∈ Mod(Tonto)⇒M ∈Monto

and
M∈Monto ⇒M ∈ Mod(Tonto)
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Requirements: Semiautomatic Verification

Design︷ ︸︸ ︷
Tonto ∪ Σdomain |=

Requirements︷︸︸︷
Φ︸ ︷︷ ︸

Verification

The requirements are formulated as part of an entailment problem,
this allows for the use of an automated theorem prover to evaluate
the requirements

In this way, verification is the process of using the theorem prover to
evaluate if the requirements are entailed by the ontology
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Requirements: Characterizing the Intended Models

Challenge: recognize characteristics of the intended models

For example, in the BoxWorld ontology:
M is a model of Tsurface iff it is equivalent to a cyclic graph
G = (V , A) such that:

V = {e : 〈e〉 ∈ edge}
A = {(e1, e2) : 〈e1, e2,p〉 ∈ meet}
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Requirements: Partial Characterization

Competency Questions: queries the ontology must be able to entail

Can be used to specify:

Required properties, a partial characterization of the intended models
Necessary level of detail
Required performance with a theorem prover
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Requirements: Competency Questions

For example, in the BoxWorld ontology, for all 2-dimensional shapes,
every edge meets exactly two distinct edges:

An edge cannot meet another edge at two distinct points

Tsurface |= (∀e1, e2, e3, p1, p2)meet(e1, e2, p1)

∧meet(e1, e3, p2) ∧ ¬(p1 = p2) ⊃ ¬(e2 = e3)

Every edge meets at most two distinct edges

Tsurface |= (∀e1, e2, e3, e4, p1, p2, p3)meet(e1, e2, p1)

∧meet(e1, e3, p2) ∧meet(e1, e4, p3) ⊃

((e2 = e3) ∧ (p1 = p2)) ∨ ((e2 = e4) ∧ (p1 = p3))

∨((e3 = e4) ∧ (p2 = p3))
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Verification

Guidance for each possible outcome of verification:

Case 1:

Unintended 

Proof

Axiom design 

error

Requirement 

specification 

error

Case 2:

No Proof

No proof exists

Provable

(intractability 

issues)

Requirement too 

strong

Axiomatization 

too weak

Case 3:

Proof found

Proceed to next 

entailment 

problem

Return to Design 

Phase

Return to Design 

Phase

Return to 

Requirements 

Phase

Return to 

Requirements 

Phase

Tuning Phase
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Verification Case 1: Unintended Proof

An unintended proof indicates:

Error in the design of the axioms
Error in the specification of the requirement
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Verification Case 1: Unintended Proof

For example, we “proved” the competency question presented earlier:
Every edge meets at most two distinct edges

But, it was a proof that: Tsurface |= (¬∃p)point(p)

Examination of the proof showed that the axiom:

(∀e, p1, p2, p3)edge(e)∧point(p1)∧point(p2)∧point(p3)∧part(p1, e)

∧part(p2, e) ∧ part(p3, e) ⊃ (p1 = p3) ∨ (p2 = p3)

was incorrect
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Verification Case 2: No Proof Found

Failure to find a proof indicates:
Case 2A: No proof exists

Requirement is too strong
Ontology is too weak

Case 2B: Provable

Requirement is provable, but the theorem prover is having difficulties
producing the proof

Generating counterexamples can identify Case 2A, but sometimes the
cause is ambiguous
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Verification Case 2: No Proof Found

For example, we could not find a proof of the competency question
that an edge cannot meet another edge at two distinct points:

(∀e1, e2, e3, p1, p2)meet(e1, e2, p1) ∧meet(e1, e3, p2)

∧¬(p1 = p2) ⊃ ¬(e2 = e3)

Intuitions and knowledge of development history help determine the
cause:

Poor theorem prover performance? Or not provable?
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Verification Case 2A: Not Provable

In this instance, no proof existed
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A design decision:

Relax the requirement?
Strengthen the axioms?
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Verification Case 2B: Provable

Tuning: The addition of lemmas or the use of subsets of the ontology
in order to improve theorem prover performance

Lemmas - in the traditional mathematical sense; some consequence of
a theory (ontology) that can be used to help prove some goal
(requirement)
Subsets - large ontologies may slow theorem prover performance;
reasoning with a subset of the ontology’s axioms may improve
performance enough to prove a particularly challenging requirement
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Summary

Expressiveness of requirements

We proposed a lifecycle to support the development of expressive
ontologies, employing automated reasoners for a rigorous specification
and semiautomatic verification of semantic requirements.

Verification guidance

We provided pragmatic guidance for the development phases,
addressing all possible outcomes of theorem prover verification,
including ambiguous timeouts (intractability or semidecidability?).

This methodology has been effectively used with ontologies for sheet
metal manufacturing and PSL (ISO18629).
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Future Work

Incorporate consideration of other ontology development issues such
as quality, requirements validation, etc.

Address the challenge of model exploration for iterative refinement in
cases where the ontology has only infinite models

Include more specific guidance on how to leverage system use cases
(when appropriate) to identify semantic requirements
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