

OntologySummit2013: Thursday 2013-01-31 Summit Theme: "Ontology Evaluation Across the Ontology Lifecycle" Summit Track Title: Track-A: Intrinsic Aspects of Ontology Evaluation Session Topic: Intrinsic Aspects of Ontology Evaluation: Practice and Theory

A PITFALL CATALOGUE AND OOPS!: AN APPROACH TO ONTOLOGY VALIDATION

María Poveda-Villalón, Mari Carmen Suárez-Figueroa and Asunción Gómez-Pérez

Ontology Engineering Group. Departamento de Inteligencia Artificial. Facultad de Informática, Universidad Politécnica de Madrid. Campus de Montegancedo s/n. 28660 Boadilla del Monte. Madrid. Spain {mpoveda, mcsuarez, asun}@fi.upm.es

- Introduction
- Pitfall Catalogue
- OOPS! (OntOlogy Pitfall Scanner!)
- Conclusions and Future Work

Introduction (i)

Methodologies (e.g: Methontology [1, 2], On-To-Knowledge [3], DILIGENT [4], and the NeOn Methodology [5]) that support the **ontology development** transformed the art of building ontologies into an **engineering activity**.

The correct application of such **methodologies benefits** the **ontology quality**.

Developers must tackle a wide range of difficulties and handicaps when modelling ontologies.

However

These difficulties can imply the appearance of **anomalies** or **worst practices** in ontologies.

Ontology evaluation (checking the technical quality of an ontology against a frame of reference) is a **crucial activity** in ontology engineering projects.

[1] Gómez-Pérez, A., Fernández-López, M., Corcho, O. Ontological Engineering. November 2003. Springer Verlag. Advanced Information and Knowledge Processing series. ISBN 1-85233-551-3.

[2] M. Fernández-López, A. Gómez-Pérez, N. Juristo. METHONTOLOGY: From Ontological Art Towards Ontological Engineering. 1997. Spring Symposium on Ontological Engineering of AAAI. Stanford University, California, pp 33–40.

[3] S. Staab, H.P. Schnurr, R. Studer, Y. Sure. Knowledge Processes and Ontologies. IEEE Intelligent Systems 16(1):26–34. (2001).

[4] H. S. Pinto, C. Tempich, S. Staab. DILIGENT: Towards a fine-grained methodology for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In Ramón López de Mantaras and Lorenza Saitta, Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), August 22nd - 27th, pp. 393--397. IOS Press, Valencia, Spain, August 2004. ISBN: 1-58603-452-9. ISSN: 0922-6389.

[5] M.C. Suárez-Figueroa. Doctoral Thesis: NeOn Methodology for Building Ontology Networks: Specification, Scheduling and Reuse. Spain. Universidad Politécnica de Madrid. June 2010.

Introduction (ii)

A lot of work has been done in ontology evaluation:

- generic quality evaluation frameworks [1, 2, 3, 4, 5],
- methods based on the final (re)use of the ontology [6]
- quality models based on features, criteria and metrics [7, 8]
- tools: ODEclean, ODEval, XDTools, OntoCheck, EyeBall, MoKi, etc.

However

Ontology evaluation is still largely neglected by developers and practitioners

Maybe because of?

- (a) the current **time-consumin**g and **tedious** nature of evaluating the quality of an ontology
- (b) the **lack** of **awareness** of the necessity for evaluating ontologies we are producing and publishing throughout the web.
- [1] Welty, C.A., and Guarino, N. Supporting ontological analysis of taxonomic relationships. In Data & Knowledge Engineering. vol 39, pp 51-74. 2001
 [2] Duque-Ramos, A., Uriel López, J. T. Fernández-Breis, Robert Stevens. *Towards an SQUaRE-based Quality Evaluation Framework for Ontologies*. OntoQual 2010 - Workshop on Ontology Quality at EKAW 2010) ISBN: ISSN 1613-0073. Pages: 13-24. 15 October 2010. Lisbon, Portugal.
 [3] Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann J. *Modelling Ontology Evaluation* and *Validation*. Proceedings of ESWC2006, number 4011 in LNCS, Budva. 2006.
 [4] Gómez-Pérez, A. *Ontology Evaluation*. Handbook on Ontologies. S. Staab and R. Studer Editors. Springer. International Handbooks on Information Systems. Pp: 251-274. 2004.
 [5] Strasunskas, D., Tomassen, S.L.: *The role of ontology in enhancing semantic searches: the EvOQS framework and its initial validation*. Int. J. Knowledge and Learning, Vol. 4, No. 4, pp. 398-414.
 - [6] Suárez-Figueroa, M.C. Doctoral Thesis: NeOn Methodology for Building Ontology Networks: Specification, Scheduling and Reuse. Spain. Universidad Politécnica de Madrid. June 2010.
 - [7] Flemming, A.. Assessing the quality of a Linked Data source. Proposal. http://www2.informatik.hu-berlin.de/~flemming/Proposal.pdf
 - [8] Burton-Jones, A., Storey, V.C., and Sugumaran, V., and Ahluwalia, P. A Semiotic Metrics Suite for Assessing the Quality of Ontologies. Data and Knowledge Engineering, (55:1) 2005, pp. 84-102.

Introduction (iii)

Our objective is

- To ease the activity of ontology evaluation (mainly people who are not ontological engineers)
- To reduce time and effort in ontology evaluation
- Mainly focused on technology transfer in enterprises

For doing so we have

- (a) Created a catalogue contained potential errors we have seen in other ontologies and other authors' work
- (b) Established mechanisms to keep this catalogue updated and maintained
- (c) Automated the detection of several errors
- (d) Provided a web-based user interface

- Introduction
- Pitfall Catalogue
- OOPS! (OntOlogy Pitfall Scanner!)
- Conclusions and Future Work

Pitfall Catalogue - Origin and Maintenance

Origin

- Manual inspection of 26 ontologies (students from the master on artificial intelligence at UPM)
- Well known problems described by other authors [Gómez-Pérez, 2004; Noy and McGuinness, 2001; Rector, et al., 2004]
- First pitfall catalogue version published [Poveda-Villalón, et al., 2010]
- 24 pitfalls described

Maintenance

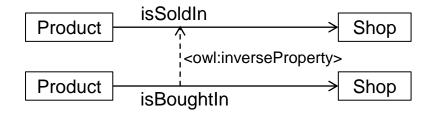
- Including new pitfalls:
 - o **Discovered** while manually analyzing ontologies
 - Proposed by users (http://www.oeg-upm.net/oops/submissions.jsp)
- Current version contains 35 pitfalls
- 11 new pitfalls (P25-P35)
- Survey on ontology pitfall importance

(https://docs.google.com/spreadsheet/viewform?formkey=dFBqT1N1a3dHQWZ2SjJOeG41OTliaXc6MQ#gid=0)

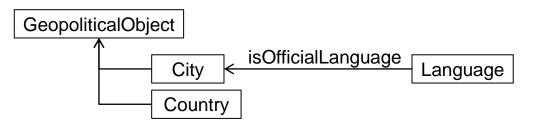
Gómez-Pérez, A. "Ontology Evaluation". Handbook on Ontologies. S. Staab and R. Studer Editors. Springer. International Handbooks on Information Systems. Pp: 251-274. 2004.

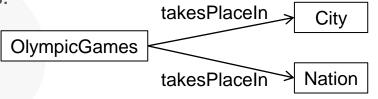
Noy, N.F., McGuinness. D. L. "Ontology development 101: A guide to creating your first ontology." Technical Report SMI-2001-0880, Standford Medical Informatics. 2001.

Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R.,; Wang, H., Wroe, C. "Owl pizzas: Practical experience of teaching owl-dl: Common errors and common patterns". In Proc. of EKAW 2004, pp: 63–81. Springer. 2004.


M. Poveda-Villalón, M.C. Suárez-Figueroa, A. Gómez-Pérez. *A Double Classification of Common Pitfalls in Ontologies.* OntoQual 2010 - Workshop on Ontology Quality at EKAW 2010. Proceedings of the Workshop on Ontology Quality - OntoQual 2010

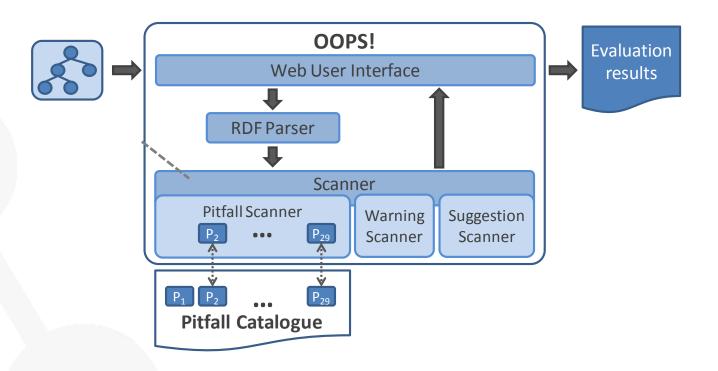
Pitfall Catalogue so far


Human understanding	Modelling issues
 P1. Creating polysemous elements P2. Creating synonyms as classes P7. Merging different concepts in the same class P8. Missing annotations P11. Missing domain or range in properties P12. Missing equivalent properties P13. Missing inverse relationships P19. Swapping intersection and union P20. Misusing ontology annotations P22. Using different naming criteria in the ontology P30. Missing equivalent classes P32. Several classes with the same label Logical consistency P5. Defining wrong inverse relationships P6. Including cycles in the hierarchy P14. Misusing "not some" and "some not" P18. Specifying too much the domain or the range P19. Swapping intersection and union P27. Defining wrong equivalent relationships P28. Defining wrong symmetric relationships P29. Defining wrong transitive relationships P31. Defining wrong equivalent classes P33. Creating a property chain with just one property 	 P2. Creating synonyms as classes P3. Creating the relationship "is" instead of using "rdfs:subClassOf", "rdf:type" or "owl:sameAs" P4. Creating unconnected ontology elements P5. Defining wrong inverse relationships P6. Including cycles in the hierarchy P7. Merging different concepts in the same class P10. Missing disjointness P17. Specializing too much a hierarchy P11. Missing domain or range in properties P13. Missing inverse relationships P14. Misusing "owl:allValuesFrom" P15. Misusing "not some" and "some not" P18. Specifying too much the domain or the range P19. Swapping intersection and union P21. Using a miscellaneous class P23. Using incorrectly ontology elements P24. Using recursive definition P25. Defining a relationships for a symmetric one P27. Defining wrong equivalent relationships P28. Defining wrong equivalent classes P30. Missing equivalent classes
 P5. Defining wrong inverse relationships P9. Missing basic information P10. Missing disjointness 	 P31. Defining wrong equivalent classes P32. Several classes with the same label P33. Creating a property chain with just one property
 P27. Defining wrong equivalent relationships P28. Defining wrong symmetric relationships P29. Defining wrong transitive relationships 	Ontology language specification • P34. Untyped class • P35. Untyped property


• **P5. Defining wrong inverse relationships:** two relationships are defined as inverse relations when they are not necessarily.

• **P18. Specifying too much the domain or the range:** not to find a domain or a range that is general enough.

• **P19. Swapping intersection and union:** the ranges and/or domains of the properties (relationships and attributes) are defined by intersecting several classes in cases in which the ranges and/or domains should be the union of such classes.

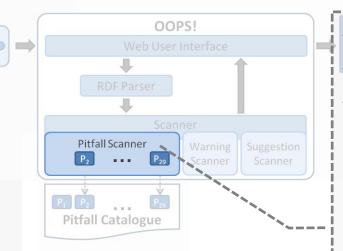


- Pitfalls could represent or lead to an error.
- Pitfalls are **not necessarily** errors. For example, pitfalls **might not** represent an error depending on:
 - Modelling decisions.
 - Context or scope of the ontology.
 - Ontology requirements.
- In addition not all the pitfalls are equally important.
- Ongoing work: associate an indicator to each pitfall according to their possible negative consequences
 - Survey on ontology pitfalls importance: <u>https://docs.google.com/spreadsheet/viewform?formkey=dF</u> <u>BqT1N1a3dHQWZ2SjJOeG41OTliaXc6MQ#gid=0</u>

- Introduction
- Pitfall Catalogue
- OOPS! (OntOlogy Pitfall Scanner!)
- Conclusions and Future Work

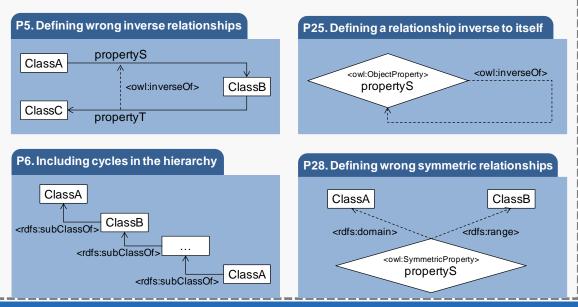
OOPS! - How it is internally organized (i)

- Web-based tool
- Available at http://www.oeg-upm.net/oops
- Ontology development environment independent
- No installation process required

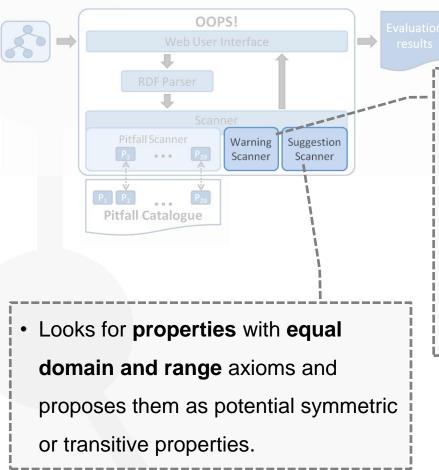


Jena API: http://jena.sourceforge.net/

Java EE: http://www.oracle.com/technetwork/java/javaee/overview/index.html HTML: http://www.w3.org/html/wg/

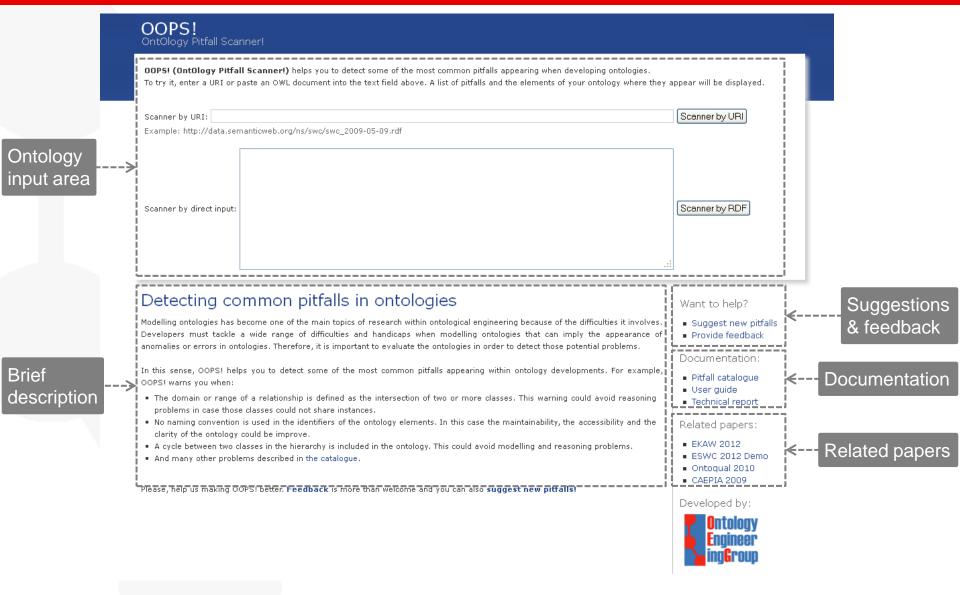

jQuery: http://jquery.com/ JSP: http://www.oracle.com/technetwork/java/javaee/jsp/index.html CSS: http://www.w3.org/Style/CSS/

OOPS! - How it is internally organized (ii)

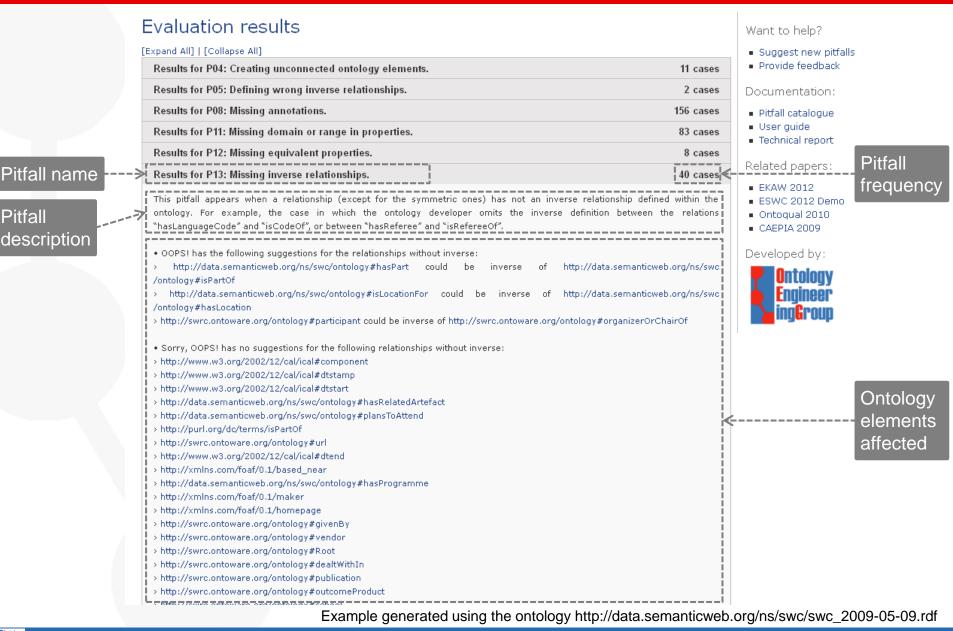


21 pitfalls **implemented** out of 35 included in the catalogue

- 1 Java class per pitfall implementation
- Detection automated in 2 ways:
 - Checking general characteristics of the ontology (P3, P7, P12, P20, P21, and P22). Eg: P 22. Using more than one naming convention.
 - Looking for patterns (P2, P4, P5, P6, P8, P10, P11, P13, P19, P24, P25, P26, P27, P28, and P29). Eg: P5: Defining wrong inverse relationships



OOPS! - How it is internally organized (iii)



- Identifies cases where a class or property is not defined as such by means of the corresponding OWL primitive.
- It is spotted during the execution of the "Pitfall Scanner" module.
- Only the classes and relationships related to the other pitfalls detection are flag up.

OOPS! - How it works (i)

OOPS! - How it works (ii)

A pitfall catalogue and OOPS: an approach to ontology validation

- Introduction
- Pitfall Catalogue
- OOPS! (OntOlogy Pitfall Scanner!)
- Conclusions and Future Work

Conclusions and Future Work (i)

Conclusions		
Catalogue	 Currently 35 pitfalls including other authors' work Maintained and open to users/experts/practitioners point of view (collaborative) 	
OOPS! OntOlogy Pitfall Scanner!	 It is freely available to users on the Web: http://www.oeg-upm.net/oops is fully independent of any ontology development environment. works with main web browsers (Firefox, Chrome, Safari and IE). does not involve installation process. Everyone can test it, provide feedback, suggest new pitfalls to be included in the catalogue and implemented into the tool. easy to use broadly used >800 executions >300 different ontologies from 14th November 2011 to 29th January 2013 feedback from a number of users by emails and feedback form 	

For further details see: M. Poveda-Villalón, M.C. Suárez-Figueroa, A. Gómez-Pérez. *Validating ontologies with OOPS!*. 18th International Conference on Knowledge Engineering and Knowledge Management (EKAW2012). 8 - 12 October 2012, Galway, Ireland. ISBN:978-3-642-33875-5

Conclusions and Future Work (ii)

Future Work		
Catalogue	Continuous maintenance	
	 To associate an indicator to each pitfall according to their possible negative consequences (coming soon) 	
	 To include guidelines about how to solve each pitfall 	
OOPS! OntOlogy Pitfall Scanner!	 To create an specialized version of OOPS! for Linked Data use case 	
	 Developers are often domain experts 	
	 No or little ontology knowledge support 	
	 Little time/resources to evaluate the vocabularies 	
	 Mainly lightweight vocabularies (lack of axioms) 	
	 Specialized requirements for web ontologies (e.g: derreferenciability) 	
	 To create an access point to more complex ontology evaluation techniques 	
	 Up to now we point to another papers 	
	 To incorporate other tools into OOPS! (e.g: eyeball) 	
	 To list and classify methods and tools 	
	 To point to other methods (e.g: OntoClean) or tools (e.g: ontocheck) 	
	Web Services (coming soon, under testing)	
	 To allow pitfalls definition following a formal language, according with their particular quality criteria 	

OntologySummit2013: Thursday 2013-01-31 Summit Theme: "Ontology Evaluation Across the Ontology Lifecycle" Summit Track Title: Track-A: Intrinsic Aspects of Ontology Evaluation Session Topic: Intrinsic Aspects of Ontology Evaluation: Practice and Theory

A PITFALL CATALOGUE AND OOPS!: AN APPROACH TO ONTOLOGY VALIDATION

María Poveda-Villalón, Mari Carmen Suárez-Figueroa and Asunción Gómez-Pérez

Ontology Engineering Group. Departamento de Inteligencia Artificial. Facultad de Informática, Universidad Politécnica de Madrid. Campus de Montegancedo s/n. 28660 Boadilla del Monte. Madrid. Spain {mpoveda, mcsuarez, asun}@fi.upm.es