

Patrick Lambrix, Valentina Ivanova, Zlatan Dragisic, Fang Wei-Kleiner

Defects in ontologies

- Syntactic defects
 - □ eg. wrong tags or incorrect format
- Semantic defects
 - □ eg. unsatisfiable concepts, incoherent and inconsistent ontologies
- Modeling defects
 - □ eg. wrong or missing relations

Example - incoherent ontology

Example: DICE ontology

 Brain ⊑ CentralNervousSystem п BodyPart п ∃systempart.NervousSystem п ∃ region.HeadAndNeck п ∀region.HeadAndNeck

A brain is a central nervous system and a body part which has a system part that is a nervous system and that is in the head and neck region.

• CentralNervousSystem ⊑ NervousSystem

A central nervous system is a nervous system.

■ BodyPart ⊑¬NervousSystem

Nothing can be at the same time a body part and a nervous system.

Slide from G. Qi

Example - missing is-a relations

- In 2008 Ontology Alignment Evaluation Initiative (OAEI) Anatomy track, task 4
 - □ Ontology MA : Adult Mouse Anatomy Dictionary (2744 concepts)
 - □ Ontology NCI-A : NCI Thesaurus anatomy (3304 concepts)
 - □ 988 mappings between MA and NCI-A
 - 121 missing is-a relations in MA
 - 83 missing is-a relations in NCI-A

Influence of missing structure

Ontology-based querying.

Influence of missing structure

Incomplete results from ontology-based queries

Public gov U.S. National Library of Medicine National Institutes of Health	Limits Advanced search Help '[MeSH] Search Clear
Medical Subject Headings (MeSH) All MeSH Categories Diseases Category	return 1363 articles return 613 articles 55% results are missed !
 Eye Diseases Scleral Diseases Scleritis 	

Defects in ontologies

- Ontologies with defects, although often useful, also lead to problems when used in semantically-enabled applications.
- → Wrong conclusions may be derived or valid conclusions may be missed.

Debugging the missing and wrong is-a structure of taxonomies

Outline

- Definitions
- Approach
- Experiments
- Conclusion

Outline

- Definitions
- Approach
- Experiments
- Conclusion

Taxonomy networks

A **taxonomy network** consists of a set of **taxonomies** and sets of **mappings** between these taxonomies.

Defects in ontologies

- Syntactic defects
 - □ eg. wrong tags or incorrect format
- Semantic defects
 - □ eg. unsatisfiable concepts or inconsistent ontologies

Modeling defects

- □ eg. wrong or missing relations
- \rightarrow Solution requires domain knowledge.

Assumptions and scope

We focus on **taxonomies**,

 \rightarrow named concepts and is-a relations.

- We assume that all **the existing mappings** in the taxonomy network are **correct**.
 - The mappings represent equivalence and subsumption.

Debugging is-a structure in taxonomy networks

Given a set of taxonomies networked by sets of **correct** mappings, how to **detect and repair the missing and wrong is-a relations in these networked taxonomies**?

Detecting missing is-a relations

- Domain expert manual inspection
- Using external knowledge
 - □ Ontology learning
 - Discovery of subsumption relations (Hearst patterns, logical patterns)
- Using knowledge intrinsic to the network

Candidate missing is-a relations

Given two concepts A and B in a taxonomy O in the network. If "A is-a B" is **logically derivable from the taxonomy network,** but **not from the taxonomy O alone,** then "A is-a B" is a **candidate missing is-a relation.**

The candidate missing is-a relations need to be validated by a domain expert → wrong and missing is-a relations

Candidate missing is-a relations

• Two small pieces of MA and NCI-A, both about concept "joint", and 3 equivalence mappings.

Repairing is-a relations

Repair the original taxonomies by

- adding a set of is-a relations to each taxonomy, such that the missing is-a relations can be derived from the extended taxonomy;
- removing a set of is-a relations from the taxonomies, such that the wrong is-a relations cannot be derived from the network

Structural repair:

□ The is-a relations within the structural repair are called 'repairing actions'.

Repairing missing is-a relations

Question:

How can we recognize structural repairs that are interesting for a domain expert?

 \rightarrow heuristics.

Axiom-based Heuristic

Prefer to use structural repair **without non-contributing** repairing actions.

Information-based heuristic

Prefer to use structural repair with **more informative** repairing actions.

(limb_joint, joint) is more informative than
(hip_joint, joint) and (elbow_joint, joint)

Strict hierarchy heuristic

Prefer to use structural repair which **does not change the** existing is-a relations in the original ontology into equivalence relations.

(**body part, joint**) will introduce an equivalence relation between '**joint**' and '**body part**'.

Single relations heuristic

 Assume that it is more likely that domain experts have missed a single relation than a chain of relations

Assume it is more likely that

 (ankle_joint, limb_joint)
 is missing than
 (ankle_joint, x1) and (x1,x2), and ... and (xk-1, xk)
 and (xk, limb_joint).

Repairing wrong is-a relations

- Find explanations (justifications)
- Remove part of the explanation

Outline

Definitions

Approach

- Experiments
- Conclusion

Overview of debugging approach

Phase 1: Detecting candidate missing is-a relations

Phase 2: Validating candidate missing is-a relations

Phase 3.1: Generating repairing actions for missing is-a relations

Example

Phase 3.2: Ranking missing is-a relations

Phase 3.3: Recommending repairing actions for missing is-a relations

Phase 3.4: Executing repairing actions for missing is-a relations

Repairing wrong is-a relations

- Phase 3.1: generate repairing actions
 - Based on justifications
- Phase 3.2: rank wrong is-a relations
 - Based on number of possible repairing actions
- Phase 3.3: recommend repairing actions
 - Based on occurrences in different derivation paths
- Phase 3.4: execute repairing actions
 - Compute consequences

Outline

Definitions

Approach

- Experiments
- Conclusion

Experiment "missing" - bib

Bibliography dataset (2010 OAEI Benchmark)

Experiment "missing" - bib

- Bibliography Dataset 1 network
 - □ Missing is-a relations
 - \Box 22 in 101 (of which 12 redundant)
 - □ 1 in 301
 - □ 1 in 302
 - □ 1 in 303
 - \Box 23 in 304 (of which 14 redundant)
 - □ The whole debugging process took about 5 minutes.

Experiment "missing" - bib

- Bibliography Dataset 4 small networks
 - Missing is-a relations
 - For 101-301: 1 for each ontology
 - For 101-302: 17 (of which 11 redundant) for 101 and 1 for 302
 - For 101-303: 1 for 303
 - For 101-304: 4 for 101 and 5 (of which 1 redundant) for 304
 - The whole debugging process took less than 5 minutes.
 - Comparison 1 network / 4 networks
 - □ 301, 302, 303: same results in both scenarios
 - More missing is-a relations found and repaired in the scenario with 1 network

Experiment "missing" - Anatomy

Experiment on Anatomy dataset (2008 OAEI Anatomy)MA: 2744 concepts, 1807 asserted is-a relationsNCI-A: 3304 concepts, 3761 asserted is-a relationsPA: 988 equivalence relations, 1 subsumption

\rightarrow

new is-a relations: 205 for MA, 177 for NCI-A total: 3 hours debugging time (almost all time on validation) In most cases, the ranking and recommendations seemed useful.

Experiment "wrong and missing" -Anatomy

Experiment on Anatomy dataset (2010 OAEI Anatomy)MA: 2744 concepts, 1807 asserted is-a relationsNCI-A: 3304 concepts, 3761 asserted is-a relationsPA: 986 equivalence relations, 1 subsumption

\rightarrow

new is-a relations: 107 for MA, 64 for NCI-A removed is-a relations: 3 from MA, 12 from NCI-A total: 5 hours debugging time (almost all time on validation)

Outline

- Definitions
- Approach
- Experiments
- Conclusion

Extensions

Taxonomies

- Debugging wrong and missing is-a structure and mappings within networked taxonomies (WoDOOM12, ESWC13)
 - Experiment on Anatomy dataset (2010 OAEI Anatomy)
 - ToxOntology MeSH (Swedish National Food Agency)
- □ Aligning ontologies = detecting missing mappings (ESWC13)
- ALC acyclic terminologies (JIST12)
- Repairing missing is-a relations is an abduction problem (JIST12)

Future work

- Algorithms for more ontologies in more expressive languages
- Complexity of the abduction problem for different languages
- Preference criteria for solutions

References

- Lambrix P, Liu Q, Tan H, Repairing the missing is-a structure of ontologies, 4th Asian Semantic Web Conference - ASWC09, LNCS 5926, 76-90, 2009.
- Lambrix P, Liu Q, Debugging is-a structure in networked taxonomies, 4th International Workshop on Semantic Web Applications and Tools for the Life Sciences –SWAT4LS, 58-65, 2011.
- Ivanova V, Laurila Bergman J, Hammerling U, Lambrix P, Debugging taxonomies and their alignments the ToxOntology MeSh use case, *1st International Workshop on Debugging Ontologies and Ontology Mappings*, 25-36, 2012.
- Lambrix P, Dragisic Z, Ivanova V, Get my pizza right: Repairing missing is-a relations in ALC ontologies, 2nd Joint International Semantic Technology Conference – JIST12, LNCS 7774, 17-32 2012.
- Lambrix P, Ivanova V, A unified approach for debugging is-a structure and mappings in networked taxonomies.
- Ivanova V, Lambrix P, A unified approach for aligning taxonomies and debugging taxonomies and their alignments, 10th Extended Semantic Web Conference – ESWC13, 2013.

References

http://www.ida.liu.se/~patla/DOOM/publications.shtml

 WoDOOM – International Workshop on Debugging Ontologies and Ontology Mappings