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Sigma

● An IDE for SUMO
● Browsing, inference, debugging
● Some information extraction



Suggested Upper Merged 
Ontology

●1000 terms, 4000 axioms, 750 rules

●Mapped by hand to all of WordNet 1.6
● then ported to 3.0

●Associated domain ontologies totalling 20,000 terms and 80,000 
axioms

●Mapped to all of YAGO – millions of facts

●Free
● SUMO is owned by IEEE but basically public domain

● Domain ontologies are released under GNU

● www.ontologyportal.org
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Why Expressive Logic?



  

Taxonomy

● What's an 
automobile?
– truck or sedan

– Alone it might be 
taken as not 
including trucks

– Does truck include 
18-wheelers?

automobile

truck

AdamsHonda

sedan



  

Automation

● if d is an a, a can't be 
a d (usually)a

b

d

c



  

Fixing Meaning

Horse



  

Fixing Meaning

Horse is a mammal



  

Fixing Meaning

Horse is a mammal that 
has four legs



  

Fixing Meaning

Horse is a mammal that 
has four legs and is

capable of carrying a
human rider that largely

controls its actions



  

Fixing Meaning

Caballo



  

Call it by another name

● But is it the same?
● One might assert the term is the same

– is it?

● If definitions are shared but shallow, what 
might be missing?

● If definitions are different are they consistent?
– How do you determine consistency?



  

Inferential Closure

● (subclass Horse Mammal)

(instance Horse MrEd) ->

(instance MrEd Mammal)

● (=>

  (instance ?X Mammal)

  (exists (?H)

    (and

      (instance ?H Head)

      (part ?H ?X))))



  

Inferential Closure



  

Inferential Closure



  

Inferential Closure



  

Text Processing



  

Sentiment Analysis

● Emotional content of text
● Pilot project combining

– Sentiment analysis (computational linguistics)

– Concept extraction (linguistic semantics/ontology)

● Note this is just a pilot project and the computational 
linguistic method used is really basic, not state of the art

● Applications: 
– Fine grained search by features

– Ratings by review, not by stars, and integrated across sources

– Merge hotel ratings from different services that have different 
scales by using sentiment



  

Meadowood, St. Helena: Restaurant:10
“In recent years the elegant but unstuffy dining room has won rave 
reviews, becoming a destination restaurant.“

Marys Lake Lodge and Resort, CO: Roadway: -8
“Not to mention it is very expensive and located in a place that doesn't get 
much sun so it's icy and cold; and the maintenance of roads is terrible in 
winter.”



  

Sigma



Sigma Functions
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● Simple string distance-based merging 
tool
– More complicated algorithms seemed to 

have little practical effect
– Most of the value was in a convenient 

GUI

– Most ontologies to be merged have so 
little to match on

● Supported Languages
– SUO-KIF

– OWL
– Prolog

– TPTP

– THF

Mapping&
Merging

Load/
SaveAs

Mapping, 
merging 
and 
translation



KBs

Browse
Term

Browse
Word

Simplified
Browse

Browse
WordNet

Graph

Browsing 
and display





Consistency
Check

KB
Diagnostics

WordNet
Diagnostics

Analysis and 
debugging

● Consistency check
– Attempt to prove 

inconsistency

– Incomplete

● Rootless term
● No documentation
● Term with no axioms
● Disjoint parents
● File dependency
● WordNet-SUMO 

hierarchy compare



● Local inference engines
– KIF-Vampire, LEO-II, Metis, 

SInE

– 40+ TPTP engines remote at U 
Miami

Ask/
Tell

Local Remote

Inference



● Pre- and post- 
processing to interface 
with standard provers

● Metis needed for 
answer extraction and 
proof presentation with 
many provers

Predicate
Variables

Higher 
Order

Arithmetic
Functions

Row Variable
Expansion

Predicate
Renaming

VampireSort
Prefixing

TPTP
World Metis

Proof
Simplification

SUMO+
Query

Answer+
Proof

Answer
Extraction





SUO-KIF

● variant of the KIF language (Genesereth, 
1991)

● LISP-like syntax
● only logical operators in the language itself

– Original KIF had ”definition” and class-forming 
operators



SUO-KIF (continued)
● “free” syntax

– variables in the predicate position 
– quantification over formulas
– predicates and instances may share names

● empty conjunctions etc not allowed
● Variables denoted by “?” character
● Sequence variables
● “forall”, “exists”, “=>” and “<=>”
● quantified variables have no explicit sort 

syntax



Class and Instance Creation 
Predicates

(instance Adam Human)
(subclass Human Mammal)

not

(Human Adam)
(Mammal Human)



Sigma Inference

● Since 2002 using a customized version of 
Vampire
– Treat sequence variables as macros

– Quantification of free variables

– Quoting second order

– “holds” prefixes (for functions too)

– Adding explicit sorts (* new)



Sequence Variables
● Useful convenience for knowledge engineer

(=>
    (and
        (subrelation ?REL1 ?REL2)
        (?REL1 @ROW))
    (?REL2 @ROW))

becomes
(=>
    (and
        (subrelation ?REL1 ?REL2)
        (?REL1 ?ARG1))
    (?REL2 ?ARG1))
(=>
    (and
        (subrelation ?REL1 ?REL2)
        (?REL1 ?ARG1 ?ARG2))
    (?REL2 ?ARG1 ?ARG2))

etc.



Quantify Free Variables

● Universal quantification in assertion, 
existential in query

(=>
    (and
        (subrelation ?REL1 ?REL2)
        (?REL1 ?ARG1))
    (?REL2 ?ARG1))

becomes
(forall (?REL1 ?REL2 ?ARG1)
    (=>
        (and
            (subrelation ?REL1 ?REL2)
            (?REL1 ?ARG1))
        (?REL2 ?ARG1)))



“holds” prefixing
● Prepend a “dummy” predicate to every 

clause with a non-logical operator
● Forces any predicate variables into the first 

argument
● A single predicate name ruins performance
● Including number of arguments in name 

helps (and use apply_ for functions)

 (=>
   (inverse ?REL1 ?REL2)
   (forall (?INST1 ?INST2)
      (<=>
         (?REL1 ?INST1 ?INST2)
         (?REL2 ?INST2 ?INST1))))

(=>
   (holds_3__ inverse ?REL1 ?REL2)
   (forall (?INST1 ?INST2)
      (<=>
         (holds_3__ ?REL1 ?INST1 ?INST2)
         (holds_3__ ?REL2 ?INST2 ?INST1))))



Quoting Second Order

● Unification still works

(believes Mary 
  (likes Mary Bill)) ;; fact

(believes Mary (likes ?X Bill)) ;; query

(likes Mary Bill) ;; result

 
 

(believes Mary 
  (and
    (likes Mary Bill)
    (likes Sue Bill)))

(believes Mary (likes ?X Bill)) ;; query doesn't unify

● But logical operators lose their meaning



Sortals

(=>
    (and
        (instance ?TRANSFER Transfer)
        (agent ?TRANSFER ?AGENT)
        (patient ?TRANSFER ?PATIENT))
    (not
        (equal ?AGENT ?PATIENT)))

 (=>
    (and
        (instance ?AGENT Agent)
        (instance ?PATIENT Object))
    (=>
        (and
            (instance ?TRANSFER Transfer)
            (agent ?TRANSFER ?AGENT)
            (patient ?TRANSFER ?PATIENT))
        (not
            (equal ?AGENT ?PATIENT)))

● Use argument type signatures to define 
variable sorts

(domain agent 2 Agent)
(domain patient 2 Object)



TPTP Syntax Translation
(forall (?REL ?OBJ ?PROCESS)
   (=>
      (and
         (holds_3__ instance ?REL CaseRole)
         (holds_3__ instance ?OBJ Object)
         (holds_3__ ?REL ?PROCESS ?OBJ))
      (exists (?TIME)
         (holds_3__ overlapsSpatially 
             (apply_3__ WhereFn ?PROCESS ?TIME) ?OBJ))))

fof(name,axiom,
    ! [V_REL,V_OBJ,V_PROCESS] :
      ( ( holds_3__(s_instance,V_REL,s_CaseRole)
        & holds_3__(s_instance,V_OBJ,s_Object)
        & holds_3__(V_REL,V_PROCESS,V_OBJ) )
     => ? [V_TIME] :
          holds_3__(s_overlapsSpatially,
              apply_3__(s_WhereFn,V_PROCESS,V_TIME),V_OBJ) )).



Optimization – Predicate Variable 
Instantiation

● Instantiate predicate variables to eliminate 
“holds”

(=>
    (instance ?REL TransitiveRelation)
    (forall (?INST1 ?INST2 ?INST3)
        (=>
            (and
                (?REL ?INST1 ?INST2)
                (?REL ?INST2 ?INST3))
            (?REL ?INST1 ?INST3))))

 (=>
    (instance subclass TransitiveRelation)
    (forall (?INST1 ?INST2 ?INST3)
        (=>
            (and
                (subclass ?INST1 ?INST2)
                (subclass ?INST2 ?INST3))
            (subclass ?INST1 ?INST3))))



Optimization

● Cache transitive relations
● (subclass A B) (subclass B C)

– Cache (subclass A C)
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