
The Sigma Knowledge Engineering
Environment:

An environment for developing large theories
in first- and higher-order logic

Adam Pease, Articulate Software
apease@articulatesoftware.com

http://www.ontologyportal.org/

Sigma

● An IDE for SUMO
● Browsing, inference, debugging
● Some information extraction

Suggested Upper Merged
Ontology

●1000 terms, 4000 axioms, 750 rules

●Mapped by hand to all of WordNet 1.6
● then ported to 3.0

●Associated domain ontologies totalling 20,000 terms and 80,000
axioms

●Mapped to all of YAGO – millions of facts

●Free
● SUMO is owned by IEEE but basically public domain

● Domain ontologies are released under GNU

● www.ontologyportal.org

SUMO+Domain Ontology
Structural
Ontology

Base
Ontology

Set/Class
Theory

Numeric Temporal Mereotopology

Graph Measure Processes Objects

Qualities

SUMO

Mid-Level

Military

Geography

Elements

Terrorist
Attack Types

Communications

People

Transnational
Issues

Financial
Ontology

Terrorist
Economy

NAICS
Terrorist
Attacks

…

France

Afghanistan
UnitedStates

Distributed
Computing

Biological
Viruses

WMD

ECommerce
Services

Government

Transportation

World
Airports

Total Terms Total Axioms Rules

20977 88257 4730

Relations: 1280

Why Expressive Logic?

Taxonomy

● What's an
automobile?
– truck or sedan

– Alone it might be
taken as not
including trucks

– Does truck include
18-wheelers?

automobile

truck

AdamsHonda

sedan

Automation

● if d is an a, a can't be
a d (usually)a

b

d

c

Fixing Meaning

Horse

Fixing Meaning

Horse is a mammal

Fixing Meaning

Horse is a mammal that
has four legs

Fixing Meaning

Horse is a mammal that
has four legs and is

capable of carrying a
human rider that largely

controls its actions

Fixing Meaning

Caballo

Call it by another name

● But is it the same?
● One might assert the term is the same

– is it?

● If definitions are shared but shallow, what
might be missing?

● If definitions are different are they consistent?
– How do you determine consistency?

Inferential Closure

● (subclass Horse Mammal)

(instance Horse MrEd) ->

(instance MrEd Mammal)

● (=>

 (instance ?X Mammal)

 (exists (?H)

 (and

 (instance ?H Head)

 (part ?H ?X))))

Inferential Closure

Inferential Closure

Inferential Closure

Text Processing

Sentiment Analysis

● Emotional content of text
● Pilot project combining

– Sentiment analysis (computational linguistics)

– Concept extraction (linguistic semantics/ontology)

● Note this is just a pilot project and the computational
linguistic method used is really basic, not state of the art

● Applications:
– Fine grained search by features

– Ratings by review, not by stars, and integrated across sources

– Merge hotel ratings from different services that have different
scales by using sentiment

Meadowood, St. Helena: Restaurant:10
“In recent years the elegant but unstuffy dining room has won rave
reviews, becoming a destination restaurant.“

Marys Lake Lodge and Resort, CO: Roadway: -8
“Not to mention it is very expensive and located in a place that doesn't get
much sun so it's icy and cold; and the maintenance of roads is terrible in
winter.”

Sigma

Sigma Functions

KBs
Mapping&
Merging

Browse
Term

Browse
Word

Ask/
Tell

Load/
SaveAs

Consistency
Check

Simplified
Browse

KB
Diagnostics

WordNet
Diagnostics

Browse
WordNet

Graph Local Remote

Mapping,
merging
and
translation Browsing

and display
Analysis and
debugging

Inference

● Simple string distance-based merging
tool
– More complicated algorithms seemed to

have little practical effect
– Most of the value was in a convenient

GUI

– Most ontologies to be merged have so
little to match on

● Supported Languages
– SUO-KIF

– OWL
– Prolog

– TPTP

– THF

Mapping&
Merging

Load/
SaveAs

Mapping,
merging
and
translation

KBs

Browse
Term

Browse
Word

Simplified
Browse

Browse
WordNet

Graph

Browsing
and display

Consistency
Check

KB
Diagnostics

WordNet
Diagnostics

Analysis and
debugging

● Consistency check
– Attempt to prove

inconsistency

– Incomplete

● Rootless term
● No documentation
● Term with no axioms
● Disjoint parents
● File dependency
● WordNet-SUMO

hierarchy compare

● Local inference engines
– KIF-Vampire, LEO-II, Metis,

SInE

– 40+ TPTP engines remote at U
Miami

Ask/
Tell

Local Remote

Inference

● Pre- and post-
processing to interface
with standard provers

● Metis needed for
answer extraction and
proof presentation with
many provers

Predicate
Variables

Higher
Order

Arithmetic
Functions

Row Variable
Expansion

Predicate
Renaming

VampireSort
Prefixing

TPTP
World Metis

Proof
Simplification

SUMO+
Query

Answer+
Proof

Answer
Extraction

SUO-KIF

● variant of the KIF language (Genesereth,
1991)

● LISP-like syntax
● only logical operators in the language itself

– Original KIF had ”definition” and class-forming
operators

SUO-KIF (continued)
● “free” syntax

– variables in the predicate position
– quantification over formulas
– predicates and instances may share names

● empty conjunctions etc not allowed
● Variables denoted by “?” character
● Sequence variables
● “forall”, “exists”, “=>” and “<=>”
● quantified variables have no explicit sort

syntax

Class and Instance Creation
Predicates

(instance Adam Human)
(subclass Human Mammal)

not

(Human Adam)
(Mammal Human)

Sigma Inference

● Since 2002 using a customized version of
Vampire
– Treat sequence variables as macros

– Quantification of free variables

– Quoting second order

– “holds” prefixes (for functions too)

– Adding explicit sorts (* new)

Sequence Variables
● Useful convenience for knowledge engineer

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 @ROW))
 (?REL2 @ROW))

becomes
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1))
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1 ?ARG2))
 (?REL2 ?ARG1 ?ARG2))

etc.

Quantify Free Variables

● Universal quantification in assertion,
existential in query

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1))

becomes
(forall (?REL1 ?REL2 ?ARG1)
 (=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1)))

“holds” prefixing
● Prepend a “dummy” predicate to every

clause with a non-logical operator
● Forces any predicate variables into the first

argument
● A single predicate name ruins performance
● Including number of arguments in name

helps (and use apply_ for functions)

 (=>
 (inverse ?REL1 ?REL2)
 (forall (?INST1 ?INST2)
 (<=>
 (?REL1 ?INST1 ?INST2)
 (?REL2 ?INST2 ?INST1))))

(=>
 (holds_3__ inverse ?REL1 ?REL2)
 (forall (?INST1 ?INST2)
 (<=>
 (holds_3__ ?REL1 ?INST1 ?INST2)
 (holds_3__ ?REL2 ?INST2 ?INST1))))

Quoting Second Order

● Unification still works

(believes Mary
 (likes Mary Bill)) ;; fact

(believes Mary (likes ?X Bill)) ;; query

(likes Mary Bill) ;; result

(believes Mary
 (and
 (likes Mary Bill)
 (likes Sue Bill)))

(believes Mary (likes ?X Bill)) ;; query doesn't unify

● But logical operators lose their meaning

Sortals

(=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

 (=>
 (and
 (instance ?AGENT Agent)
 (instance ?PATIENT Object))
 (=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

● Use argument type signatures to define
variable sorts

(domain agent 2 Agent)
(domain patient 2 Object)

TPTP Syntax Translation
(forall (?REL ?OBJ ?PROCESS)
 (=>
 (and
 (holds_3__ instance ?REL CaseRole)
 (holds_3__ instance ?OBJ Object)
 (holds_3__ ?REL ?PROCESS ?OBJ))
 (exists (?TIME)
 (holds_3__ overlapsSpatially
 (apply_3__ WhereFn ?PROCESS ?TIME) ?OBJ))))

fof(name,axiom,
 ! [V_REL,V_OBJ,V_PROCESS] :
 ((holds_3__(s_instance,V_REL,s_CaseRole)
 & holds_3__(s_instance,V_OBJ,s_Object)
 & holds_3__(V_REL,V_PROCESS,V_OBJ))
 => ? [V_TIME] :
 holds_3__(s_overlapsSpatially,
 apply_3__(s_WhereFn,V_PROCESS,V_TIME),V_OBJ))).

Optimization – Predicate Variable
Instantiation

● Instantiate predicate variables to eliminate
“holds”

(=>
 (instance ?REL TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (?REL ?INST1 ?INST2)
 (?REL ?INST2 ?INST3))
 (?REL ?INST1 ?INST3))))

 (=>
 (instance subclass TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (subclass ?INST1 ?INST2)
 (subclass ?INST2 ?INST3))
 (subclass ?INST1 ?INST3))))

Optimization

● Cache transitive relations
● (subclass A B) (subclass B C)

– Cache (subclass A C)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

