Making use of Ontologies: Tools, Services, and Techniques Ontology Summit 2014 http://ontolog.cim3.net/cgi-bin/wiki.pl? OntologySummit2014_Ontology_Tools_Services_ Techniques_Synthesis

Christoph Lange¹ (co-champion: Alan Rector²)

¹Enterprise Information Systems, University of Bonn / Fraunhofer IAIS, Germany ²Medical Informatics, School of Computer Science University of Manchester, UK

Making use of Ontologies: Tools, Services, and Techniques

Mission Statement

The Web of Data . . .

- provides great opportunities for ontology-based services, but also
- puts challenges to
 - tools for editing and using ontologies, and to
 - techniques for ontological reasoning and ontology engineering.

Terminology: Web of Data, Big Data, Semantic Web

Here, we use "Web of Data" to subsume both . . .

- Big Data (w.r.t. volume, velocity, variety)
- Semantic Web
 - making sense of knowledge distributed over the Web
 - not just using IRIs as local symbol names

Research Questions

- How can tools and techniques scale to the Web?
- How can services benefit from tapping into the Web?

How can they help to make Big Data manageable?

Track Structure

- two productive sessions, on 2014-01-30 and 2014-03-13, with 3 panelists each
- little further community input via the wiki and the mailing list
- one project participated in the Hackathon: Ontohub, was also presented in the 2014-01-30 session

First Session (2014-01-30)

- **TillMossakowski**: scaling an ontology **tool** suite (Hets/Ontohub) from "reasoning in the small" to the Web
- ChrisWelty: the potential of linking Big Data to ontological reasoning, as demonstrated by the IBM Watson natural language question answering service
- AlanRector: OWL and alternative modeling techniques, reviewed from the perspective of engineering knowledge-rich systems.

http://ontolog.cim3.net/cgi-bin/wiki.pl? ConferenceCall_2014_01_30

Second Session (2014-03-13)

- **MikeBergman**: OSF, an enterprise platform that integrates and enhances several well-known ontology **tools**
- JoseMariaGarcia: combining linked data technology with web services
- MariaPovedaVillalon: a technique for engineering linked data vocabularies, i.e. lightweight ontologies that scale to the Web

http://ontolog.cim3.net/cgi-bin/wiki.pl? ConferenceCall_2014_03_13

Services Enabled by Non-Standard Reasoning Techniques

Services can draw on a large knowledge pool by tapping into the Web – but are ontologies relevant for this?

- IBM Watson . . .
 - answers rich natural language questions over a broad domain of knowledge
 - gives precise answers, an accurate assessment of confidence and consumable justifications in seconds.

• Reasoning: Hypotheses → Evidence → Scoring

- Don't build a formal ontology of the whole world, . . .
- . . . but learn local ontologies on demand, also using informal sources, and different reasoning techniques:
 - type disambiguation using taxonomies
 - evidence scoring using machine learning

Web-wide Ontological Commitments?

- Watson limited to simple taxonomies
- Large collaboration efforts may agree on a limited set of ontologies
- Is it reasonable and feasible to turn Big Data into ontologies? – It's difficult in any case!
 - Manually building ontologies is labor intensive.
 - Data mining suffers from potential inconsistency, incompleteness, irrelevance of data "out there".
 - Machine learning of ontologies requires further research.
- Merely using ontologies for *annotating* big data with terms may suffice.

Should Ontologies Cover Everything?

- Traditional ontology languages assume universal knowledge.
 OWL is good for this.
- In the real world, knowledge is often contingent, accidental or particular. Template formalisms such as frames, UML or rules are good for this.
- Translations across formalisms not yet well understood
- RDF(S) + SPARQL usage outnumbers OWL usage
 - . . . but users are often ignorant of formal semantics.
 - Still it copes well with heterogeneous data (variety)

Is OWL still useful?

Yes!

• E.g., in the OSF, using OWL allows for

- duplicate names
- incomplete information (thanks to open world assumption)
- extensibility to multiple schemas
- Lots of tools and techniques (but most date back to small, hand-made ontologies):
 - limited to single or few formalisms
 - similar to knowledge silo-ing
- Can use OWL more creatively
 e.g. take inspiration from template formalisms
- OntolOp translates between OWL and other formalisms

Beyond a Single Ontology Language

- OntolOp supports alignments and reasoning across ontology languages.
- Not yet "big" w.r.t. volume and velocity
 ... but w.r.t. variety
- OntolOp retrofits linked data conformance (e.g. IRI identifiers) into pre-Web languages
- Growing tool support: Ontohub (→ Hackathon)

RDF as a Knowledge Representation Foundation

RDF is the "native language" of Linked Data:

- enforces a low ontological commitment . . .
- . . . but still allows to link to complex descriptions
- E.g., the Open Semantic Framework (OSF) uses a single, internal, canonical data model (RDF and some OWL):
 - representing structured, semi-structured, unstructured data
 - data structures translate into web widgets; ontologies
 - inform interface displays
 - define component behaviors
 - guide visualization template selection and content

Linked Web Services

- Web services:
 - Service provider registers service in central registry
 - 2 Service consumer finds service . . .
 - I... and communicates with it to execute it
- Semantic web services go beyond syntactic descriptions (e.g. WSDL) previous state:
 - web services exchanging heavy XML messages over SOAP
 - semantics-first modeling using expressive WSMO or OWL-S ontologies
- Face the reality:
 - lightweight REST interfaces much more popular
 - describe their semantics bottom-up in a linked data style: Linked Services (e.g. Linked USDL lightweight ontology)

Engineering Vocabularies

"Vocabulary" = "Lightweight Ontology" Linked Open Terms, an agile engineering technique:

- determine the terms needed to describe your data
- Iook for them in existing vocabularies (a lot exist on the Web!)
- Create your own when necessary, but link to existing ones
- continuous evaluation

Conclusion

• Lightweight means Scalable

- Heavyweight semantic web services have failed
- A little RDF goes a long way
- Even vocabularies can be engineered systematically
- Remaining Challenges
 - Visualisation
 - Scalability of reasoners
 - Requirements for ontology-based tools, services and techniques in a big data world still unclear.