Ontology of Sensors: Some Examples from Biology **Barry Smith** National Center for Ontological Research (NCOR) University at Buffalo

An Introduction to "Beyond Semantic Sensor Network Ontologies (SSNO)" Ontology Summit 2015 Track B Internet of Things: Toward Smart Networked Systems and Societies

The Stimulus-Sensor-Observation Ontology Design Pattern

Ontology Summit 2015: Internet of Things: Toward Smart Networked Systems and Societies Semantic Sensor Network Ontology:

Past, Present, and Future

Cory Henson

Sr. Research Scientist Bosch Research and Technology Center *cory.henson@us.bosch.com*

Open Biological and Biomedical Ontologies (OBO) Foundry (http://obofoundry.org) 6

top	Basic Formal Ontology (BFO)			
mid-	Information Ontology Artifact Biomedi Ontology Investigat (IAO) (OBI)	y for ical tions Ontology for General Medical Science		
domain level	Anatomy Ontology (FMA*, CARO) Cell Cellular t Ontology Ontology (CL) (FMA*, CO*)	en Ontology (IDO*) y Phenotypic Biological		
	Subcellular Anatomy Ontology (SAC Sequence Ontology (SO*)	O) A contrology (PaTO) A contrology (GO*) Molecular Function		
	Extension Strategy + Mod	lular Organization 7		

top level	Basic Formal Ontology (BFO)				
mid-level (generic hub)	Information Artifact Ontology(IAO)				
	IAO-Science	IAO-Intel	IAO-Computing		
domain level (spokes populatin	IAO- IAO- Biolog Physi y cs	IAO- IAO- Intel- Intel- AirForce Navy Army	IAO- EMO- Softwa Email re Ontology		
downwar Eachsmodule built by downward population from its parent					

Measuring the glucose concentration in blood

PROCEEDINGS

Open Access

Modeling biomedical experimental processes with OBI

Ryan R Brinkman¹, Mélanie Courtot¹, Dirk Derom², Jennifer M Fostel³, Yongqun He⁴, Phillip Lord⁵, James Malone⁶, Helen Parkinson⁶, Bjoern Peters⁷, Philippe Rocca-Serra⁶, Alan Ruttenberg⁸, Susanna-Assunta Sansone⁶, Larisa N Soldatova^{9*}, Christian J Stoeckert Jr.¹⁰, Jessica A Turner¹¹, Jie Zheng¹⁰, the OBI consortium

From Bio-Ontologies 2009: Knowledge in Biology Stockholm, Sweden. 28 June 2009

* Correspondence: lss@aber.ac.uk ⁹Aberystwyth University, Wales, UK

Abstract

Background: Experimental descriptions are typically stored as free text without using standardized terminology, creating challenges in comparison, reproduction and

http://www.jbiomedsem.com/content/1 /S1/S7

OGMS

Ontology for General Medical Science,

http://code.google.com/p/ogms/

Big Picture

Pain Ontology

http://philpapers.org/archive/SMITAO-12.pdf

	Symptoms	Signs	Physical Basis	Examples		
Canonical Pa	in					
PCT: Pain with concordant tissue damage	ı Pain	Manifestation of tissue damage Signals sent to nociceptive system Activation of emotion- generating brain centers, which can produce increased heart rate, blood pressure, galvanic skin response.	Peripheral tissue damage Intact nociceptive system	Primary sunburn Pain from strained muscle Pain from fracture Pulpitis		
Variant Pain						
PNT: pain without concordant tissue damage	Pain	Manifestation of some disorder in the patient Signals sent to nociceptive system Patient reports of pain are either exaggerated or muted relative to disorder Activation of emotion generating brain centers	Physical disorder of amplitude control mechanisms associated with the nociceptive system Intact nociceptive system	Myofascial pain disorder Tension-type headache Chronic back pain		
NN: neuro- pathic nociception	Pain	Neurological test confirming nerve damage	Disorder in the nociceptive system	Trigeminal neuralgia Post-herpetic neuralgia Diabetic neuropathy Central pain		
PRP: Pain-Related Phenomena Without Pain						
PBWP: pain behavior without pain	Aaargh!	Report of pain Sick role behaviors accompanied by normal clinical examination Grossly exaggerated pain behaviors Identified external incentives	Mental states such as anxiety, rather than peripheral tissue locus Disordered emotional or cognitive systems misinterpreting sensory signals	Factitious pain Malingering Anxiety-induced pain report		
	NT ·	Manifestation of tissue damage normally of the	Suppression of pain system by	Stress associated with sudden		

TWP: tissue-
damage
without painNo painManifestation of tissue damage normally of the
sort to cause painSuppression of pain system by
one or other mechanism

Stress associated with sudden emergencies Physiological damping of the pain process caused by endorphins Placebo-induced opioid analgesia Genetic insensitivity to pain

JOURN JOURN JOURN JOURN JOURN BIOME	ALOF DICAL SEMANTICS UNOFFICIAL IMPACT FACTOR 2.16 Search this journal	•
Home Articles Su	pplements Authors Reviewers About this journal My Journal of Bion	nedical Se
Top Abstract Introduction Background	Research Foundations for a realist ontology of menta disease Werner Ceusters ^{12*†} and Barry Smith ^{13†}	en Acces
Methodology Results Discussion	 * Corresponding author: Werner Ceusters <u>ceusters@buffalo.edu</u> + Equal contributors 	• Autho
Future work: Conclusions Competing	At 1 Ontology Research Group, Center of Excellence in Bioinformatics an Sciences, 701 Ellicott street, Buffalo, NY 14203, USA 2 Department of Psychiatry, University at Buffalo, NY, USA	filiation d Life
interests Authors' contributions	3 Department of Philosophy, University at Buffalo, NY, USA For all author emails, please <u>log on</u> .	21
Acknowledgemen	Journal of Riamodical Computing 2010 1/10 doi:10.1106/2041.146	00 1 10