Understanding Group Activities from Movement Sensor Data

> Torsten Hahmann Silvia Nittel Xueying Gu

Smart Buildings

Smart buildings and energy efficiency

Based on human activity adjust heat and light in building

ME BULLER BUL

Hahmann, Nittel & Gu: Understanding Group Activities

Raw Sensor Signals

Collecting raw sensor data is easy

- Lots of small compute nodes stream various raw sensor signals (e.g. audio, temperature, light)
- "Raw" signals: each sensor measures one thing
 - Heterogeneous: each sensor has its own format and its own "signal"

Current A Current B

• E.g. "when is the light on and off?" is different from "when does someone speak?" in a cubicle but both might indicate the presence of a person

Hahmann, Nittel & Gu: Understanding Group Activities

Raw Sensor Signals vs. "Entity Signals"

- Challenge: How to extract knowledge from the raw sensor data?
 - understand "big picture" of what is happing
 - understand complex processes and events and their interactions that cannot be captured by a single signal alone
- → Several *layers* of signals to understand
 - Layer 1: Raw sensor signals (e.g. light)
 - Layer 2: "Observed entity signals" (indoor trajectory)
 - Layer 3: Activities of observed entities (e.g. meetings)

Raw Sensor Data to Knowledge

Kind of Ontology Needed

- Role: Describe background knowledge about the things that we would like to know from the sensor data
- Ontology very focused on (and limited to!) the particular application domain
 - Limited to the kind of higher level knowledge we want to extract and to how it relates to the raw or aggregated data

Our Hypothesis

- Limited and focused ontologies ("vocabulary") can be a very powerful tool to automate *understanding* of low-level signals collected in heterogeneous wireless sensor networks
- The ontology captures the type of limited universe of information we are interested in. It can be stepwise refined to understand more details.

Our Case Study

- Use pre-aggregated ('fused') sensor data about human movements in an office building
- Identify different types of group activities, such as meetings
- Sensor data:
 - Observed entities: simple trajectories of humans:
 Who was in which room at which time?
 - Series of location updates of individuals currently stored in database, would also work with data streams
 - (needs different aggregation algorithms)

Approach

- 1. Define "meeting" *ontology* (as part of "group activity" ontology)
 - Define concept of a meeting
 - Define types of meetings
- 2. Write SQL queries to aggregate trajectory data into
 - Collocation events: two people in the same room at the same time
 - Classify collocation events into meetings based on the semantics specified in the ontology

Higher-Level Ontological Concepts We Want to Extract: "Meetings"

- What are meetings (and what not)?
 - Necessary condition:
 - 2 people in the same room at the same time
 - Not sufficient:
 - 2 people in the washroom \rightarrow location-dependent
 - 2 people together for a brief moment \rightarrow time-dependent

• What different kinds of meetings are there?

 Supervisory meetings, departmental meetings, project or team meetings, spontaneous desk meetings, ...

How to distinguish types of meetings?

Hahmann, Nittel & Gu: Understanding Group Activities

Higher-Level Concepts We Want to Extract: "Meetings"

- How to distinguish types of meetings?
 - Dependent on location: in a dedicated meeting room, at a desk, in an office, in the kitchen or lunch room, ...
 - Usually not meetings: two people getting coffee at the same time, two people in the reception area, in the washroom

– Dependent on time:

- Duration, Presence behaviour (many people arrive/leave at the same time vs. people dropping in, leaving early, come and go, ...), start/end conditions
- Dependent on participants: everybody from the same department, an employee and their supervisor, managers from different dept., only members of a specific project

Role of the Ontology in the Use Case

- Describe different classes of meetings and basic knowledge about them
 - Location restrictions: Where?
 - Time restrictions: When? How long?
 - Participation restrictions: Who must/may participate?

• Describe background knowledge:

- Rooms, room purpose, room equipment, ...
- Employees: office/desk, departments, projects, relationships between them, ...