Exposing and Capturing Mapping Relationships

Mala Mehrotra
Pragati Synergetic Research Inc.

Ontolog Forum Panel – Rationale, Expectations & Requirements 3rd April 2008

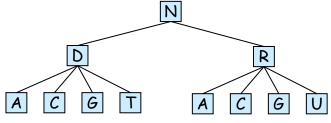
Work supported by AFRL, ONR & DARPA

OOR needs for content /application providers

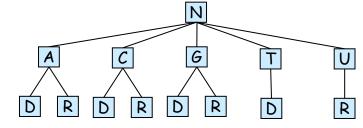
- <u>Content developers</u>: Discover related terms/axioms/models for reuse
 - Context collaboration groups of concepts
 - region (geographic, biological, political)
 - Depth/detail
 - month in SUMO vs. monthDescription in DAML time ontologies
 - Differences in competing models
 - TimeInterval in SUMO vs DurationDescription in DAML
 - Degree of Crossover/Overlap
 - · More than just imports closure
 - Orthogonality measures across ontologies
- Application developers: Interoperate using multiple ontologies
 - Create formalized mapping relationships
 - Find mapping relationships

Infrastructure Needs

- Cognitive Tools for discovery
 - Collaborating groups of concepts used in applications
 - Implicit relationships across resources
 - Ontological/Taxonomy hierarchy browsing
 - Human-machine collaboration mode
- Mapping Tools for capturing inter-resources' relationships
- Need formal representation of relationships for reasoners
 - A large repertoire of relationships
 - Multiple ontological representations
 - Mechanisms to represent formalism in human-readable form


Exposing Shades of Relationships

- Equivalence
 - PhDThesis & DoctoralThesis
- Partial
 - Specialization
 - Generalization
 - Restriction (various types) on properties
- Inverse (swapping of arguments, argument permutations)
 - move-in vs. move-out
- Negation
- Ternary
 - Transitive (multi-argument mappings)
 - Task-unit connected to tasked-unit through country codes;
 - Clichés (generalization of a repeating pattern)
 - Same type of initialization process over various types of instruments



Model equivalence despite terminology differences

- A nucleotide molecule, in Cyc's BiochemistryMt is represented by
 - holding the sugars constant at first level and varying the base (left figure) or
 - holding the base constant at first level and varying the sugar (right figure)
- The left representation good for chain type of reasoning for the molecule that is at the nucleotide level.
- The right representation good for the matching base pair type of level of reasoning.
- Clustering brought to attention both these representations.

Sugar-dependent representation

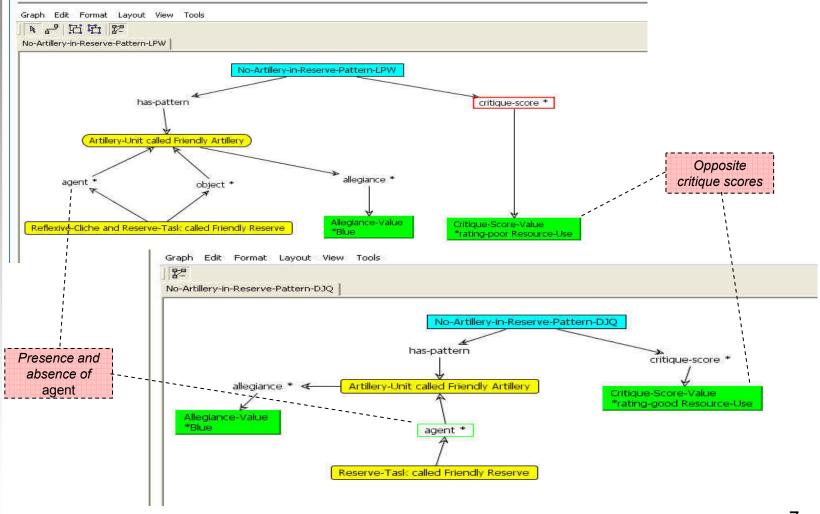
Base-dependent representation

Model equivalence despite terminology differences

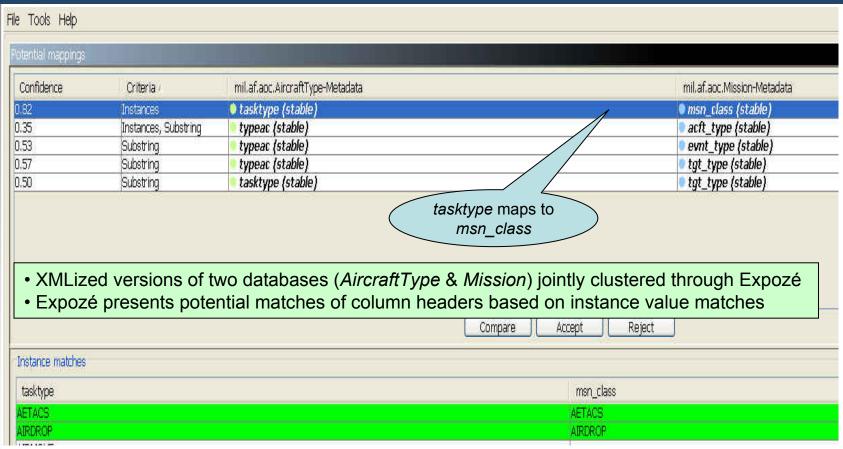
Sugar-dependent representation

```
(#$genls #$Thymine-Deoxyribonucleotide (#$genls #$Adenine-Deoxyribonucleotide #$Deoxyribonucleotide)
(#$genls #$Cytosine-Deoxyribonucleotide #$Deoxyribonucleotide)
(#$genls #$Guanine-Deoxyribonucleotide #$Deoxyribonucleotide)
```

```
(#$genls #$Uracil-Ribonucleotide #$Ribonucleotide)
(#$genls #$Adenine-Ribonucleotide #$Ribonucleotide)
(#$genls #$Cytosine-Ribonucleotide #$Ribonucleotide)
(#$genls #$Guanine-Ribonucleotide #$Ribonucleotide)
```


Base-dependent representation

Axiom Clusters showing multiple legitimate representations of Nucleotides from Cyc's BioChemistryMt


```
(#$genls #$Nucleotide #$Molecule)
(#$genls #$Deoxyribonucleotide #$Nucleotide)
(#$genls #$Ribonucleotide #$Nucleotide)
(#$genls #$AdenineNucleotide #$Nucleotide)
(#$genls #$CytosineNucleotide #$Nucleotide)
(#$genls #$GuanineNucleotide #$Nucleotide)
(#$genls #$Adenine-Ribonucleotide #$AdenineNucleotide)
(#$genls #$Adenine-Deoxyribonucleotide #$AdenineNucleotide)
(#$genls #$Cytosine-Deoxyribonucleotide #$CytosineNucleotide)
(#$genls #$Cytosine-Ribonucleotide #$CytosineNucleotide)
(#$genls #$Guanine-Deoxyribonucleotide #$GuanineNucleotide)
(#$genls #$Guanine-Deoxyribonucleotide #$GuanineNucleotide)
```


Equivalent concepts with Negation

Equivalence Mapping across Database Schemas in DISCOVER

Mapping Axioms in CL

CL formulas have been developed in collaboration with Dr. Pat Hayes (IHMC)

Partial Mapping across Database Schemas in DISCOVER

Confidence	Criteria /	mil.af.aoc.FriendlyBase-Metadata	mil.af.aoc.Mission-Metadata
1.00	Exact	omments (stable)	comments (stable)
1.00	Exact	update date time (stable)	update date time (stable)
0.13	Instances	closedatetime (stable)	start_time (stable)
0.04	Instances	closedatetime (stable)	<pre>end_time (stable)</pre>
0.06	Instances	baseid (stable)	evnt_loc (stable)
0.23	Instances	untildatetime (stable)	start_time (stable)
0.14	Instances	untildatetime (stable)	<pre>end_time (stable)</pre>
0.02	Instances	effectivedatetime (stable)	update_date_time (stable)
0.46	Instances	effectivedatetime (stable)	start_time (stable)
0.26	Instances	effectivedatetime (stable)	<pre>end_time (stable)</pre>
0.15	Instances	opendatetime (stable)	start_time (stable)
0.12	Instances	opendatetime (stable)	<pre>end_time (stable)</pre>
0.29	Instances	update_date_time (stable)	start_time (stable)
Instance match		Compare Accept	Reject
Instance match	es		Reject
baseid	es	evnt_loc	Reject
baseid KDPG	es	evnt_loc KDPG	Reject
baseid KDPG KDUW	es	evnt_loc	Reject
baseid KDPG KDUW KEDW	ės	evnt_loc KDPG	Reject
baseid KDPG KDUW KEDW KEND	es	evnt_loc KDPG	Reject
baseid KDPG	es	evnt_loc KDPG KDUW	Reject
baseid KDPG KDUW KEDW KEND KEYL KFHU	es	evnt_loc KDPG KDUW KEYL	Reject
baseid KDPG KDUW KEDW KEND KEYL KFHU KFMH	es	evnt_loc KDPG KDUW KEYL	Reject
baseid KDPG KDUW KEDW KEND KEYL	es	evnt_loc KDPG KDUW KEYL	Reject
baseid KDPG KDUW KEDW KEND KEYL KFHU KFMH KGSB	es	evnt_loc KDPG KDUW KEYL KFHU	Reject aps to baseid

Mapping Axioms in CL

- Mapping of baseid (FriendlyBase) to evnt_loc (Mission) only during aircraft Takeoff or Landing
- Axioms assume that this information is recorded in another table called *Event* with a column eventType
- Assumption allows us to define the subtable C1 by using a FromTo mapping from baseid to eventType
- Mapping of baseid (FriendlyBase) to evnt_loc (Mission) can then be defined as before using the subtable C1

Conclusions

- Mapping relationships useful in:
 - Federated Query
 - Reuse/inspect
 - Interoperate
 - Fuse/integrate
 - Tracking Content (set triggers)
- Discovery of relationships requires cognitive aid tools
 - Human collaboration essential
- Applications will need formalized representation of the mappings in OOR

Contact Information

Contact Information:

Mala Mehrotra

Email: mm@pragati-inc.com

Voice: (650) 625-0274

Pragati Synergetic Research, Inc.
NASA Research Park Suite 2001
MS 19-46Q
NASA Ames Research Center
Moffett Field CA 94035
www.pragati-inc.com

