Thoughts on Rulelog and Planning of a Mini-Series on Rules for Ontolog Forum

Benjamin Grosof*

July 25, 2013 Ontolog Forum[‡]

Globally accessible webconference session

* Benjamin Grosof & Associates, <u>http://www.mit.edu/~bgrosof/</u> and Coherent Knowledge Systems <u>http://www.coherentknowledge.com</u>

[‡] <u>http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall 2013 07 25</u>

Aspects to consider for mini-series on rules

Rulelog in more detail – incl. draw on existing tutorial material

- Concepts and logical foundations of its knowledge representation and reasoning (KRR)
 - Put meta in knowledge, as web/markup puts meta in data
 - Defeasibility (exception-ability). Bounded rationality. Higher-order. Provenance.
- **Use cases and applications. Requirements analysis.
 - Financial, health, legal, intelligence analysis, science, education, ...
 - Ontology mapping. Policies, regulations, contracts, laws. Explanation-based edutech.
- **Standards and interoperability with other semantic/rule KRR
 - RIF, RuleML, LegalRuleML. SQL, SPARQL. FOL, Common Logic. OWL.
- **Tools, incl. open-source. XSB, Flora-2, Coherent.
- Adapt existing conference-tutorial material given at AAAI-13, ISWC-2012, other conf.'s
 - <u>http://www.mit.edu/~bgrosof/#AAAI13RulesTutorial</u>
- Follow up OF session http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2013_06_20

• Natural language (NLP) for rule authoring and HCI

- Textual logic: unrestricted English mapped into (and from) logic, using logic-based NLP
 - Textual terminology. Rapid interactive disambiguation.
- Restricted NL. SBVR.

More ideas:

- Focus/drill on **'d items above
- Visualization, incl. for rule authoring and HCI
- · Combination of logical with probabilistic/statistical incl. for data analysis/mining and discovery

Optional Slides Follow about Rulelog and Textual Logic

Rulelog: Overview

- First KRR to meet central challenge:
 - rich -- higher order logic formulas, incl. as target for text interpretation
 - + defeasible -- handle exceptions, change in K, change in world
 - + tractable -- polynomial-time in worst-case
- New rich logic: based on databases, not classical logic
 - Expressively extends normal declarative logic programs (LP)
 - Transforms into LP (the logic of DB's (SQL, SPARQL) and pure Prolog)
 - Production/ECA business rules expressiveness is similar to DB's
 - LP (not FOL) is "the 99%" of practical structured info mgmt. today
- In draft as industry standard (RuleML submission to W3C RIF and ...)
- Associated new reasoning techniques to implement it
- Prototyped in Vulcan's SILK. Commercialization by Coherent Knowledge Systems.
 - Mostly open source: Flora-2 and XSB Prolog
- **Applications:** college-level science (e.g., AP Biology), legal analysis and reasoning (Regulation W), financial compliance (Financial Industry Business Ontology), health care treatment protocols, national intelligence, privacy,

Biology Example in Rulelog

Biology information about cells and nuclei:

"A eukaryotic cell has a nucleus."

```
@[id->i1, tag->r1] forall(?x)^(?x(is(a(eukaryotic(cell)))) ==> ?x(has(a(nucleus)))).
```

"A red blood cell has no nucleus."

@[id->i2, tag->r2] forall(?x)^(?x(is(a(red(blood(cell))))) ==> neg ?x(has(a(nucleus)))).

"A eukaryotic cell during anaphase has no nucleus."

@[id->i3, tag->r3] forall(?x)^(?x(is(a(eukaryotic(cell(during(anaphase)))))) ==> neg ?x(has(a(nucleus)))).

• Prioritization:

```
\overrides(r2,r1).
\overrides(r3, r1).
```

Ontology information:

```
@[strict] red(blood(cell)) ## eukaryotic(cell).
@[strict] eukaryotic(cell(during(anaphase))) ## eukaryotic(cell) .
cell41(is(a(eukaryotic(cell)))) . // Some cells
cell52 # red(blood(cell)).
cell63(is(a(eukaryotic(cell(during(anaphase)))))) .
```

- Queries:
 - ?- ?x(has(?y(nucleus))). // What has or doesn't have a nucleus?
 - ?- cell41(has(a(nucleus))) . // is true
 - $\ensuremath{\text{?-neg cell52(has(a(nucleus)))}}$. // is true, and without the neg is false

Rulelog: more details

- Defeasibility based on *argumentation theories (AT)* [Wan, Grosof, Kifer 2009]
 - Meta-rules (~10's) specify principles of debate, thus when rules have exceptions
 - Prioritized conflict handling. Ensures consistent conclusions. Efficient, flexible, sophisticated defeasibility.
- **Restraint:** semantically clean bounded rationality [Grosof & Swift, AAAI-13]*
 - Leverages "undefined" truth value to represent "not bothering"
 - Extends well-foundedness in LP
- Omniformity: higher-order logic formula syntax, incl. hilog, rule id's
 - Omni-directional disjunction. Skolemized existentials. [Grosof (invited), RuleML-2013]*
 - Avoids general reasoning-by-cases (cf. unit resolution).
- Sound interchange of K with all major standards for sem web K
 - Both FOL & LP, e.g.: RDF(S), OWL-DL, SPARQL, CL
- Reasoning techniques based on extending tabling in LP inferencing
 - Truth maintenance, justifications incl. why-not, trace analysis for KA debug, term abstraction, delay subgoals [Andersen et al, RuleML-2013 (Challenge)]

For more info, see [Grosof et al, AAAI-13 Tutorial]* – largely about Rulelog * preprint/prelim-v. already avail.

6

Example: Ontology Translation, leveraging hilog and exceptions

/* Company BB reports operating earnings using R&D operating cost which includes price of a small company acquired for its intellectual property. Organization GG wants to view operating cost more conventionally which excludes that acquisition amount. We use rules to specify the contextual ontological mapping. */

@normallyBringOver ?categ(GG)(?item) :- ?categ(BB)(?item).

@acquisitionsAreNotOperating neg ?categ(GG)(?item) :-

acquisition(GG)(?item) and (?categ(GG) :: operating(GG)).

\overrides(acquisitionsAreNotOperating, normallyBringOver). /* exceptional */

acquisition(GG)(?item) :- price_of_acquired_R_and_D_companies(BB)(?item).

R_and_D_salaries(BB)(p1001). p1001[amount -> \$25,000,000].

R_and_D_overhead(BB)(p1002). p1002[amount -> \$15,000,000].

price_of_acquired_R_and_D_companies(BB)(p1003). p1003[amount -> \$30,000,000].

R_and_D_operating_cost(BB)(p1003). /* BB counts the acquisition price item in this category */

R_and_D_operating_cost(GG) :: operating(GG).

Total(R_and_D_operating_cost)(BB)[amount -> \$70,000,000]. /* rolled up by BB cf. BB's definitions */ Total(R_and_D_operating_cost)(GG)[amount -> ?x] :- /* roll up the items for GG cf. GG's definitions */

As desired: |= R_and_D_salaries(GG)(p1001)

|= neg R_and_D_operating_cost(GG)(p1003) /* GG doesn't count it */

|= Total(R_and_D_operating_cost)(GG)[amount -> \$40,000,000]

Notation: @... declares a rule tag. ? prefixes a variable. :- means if. X :: Y means X is a subclass of Y. \overrides(X,Y) means X is higher priority than Y.

Textual Logic Approach: Overview

Logic-based text interpretation & generation, for KA & QA

- Map text to logic ("text interpretation"): for K and Q's
- Map logic to text ("text generation"): for viewing K, esp. for justifications of answers (A's)
- Map based on logic

• Textual terminology – phrasal style of K

- Use words/word-senses directly as logical constants
- Natural composition: textual phrase \leftrightarrow logical term

Interactive logical disambiguation technique

- Treats: parse, quantifier type/scope, co-reference, word sense
- Leverages lexical ontology large-vocabulary, broad-coverage
- Initial restriction to stand-alone sentences "straightforward" text
 - Minimize ellipsis, rhetoric, metaphor, etc.
- Implemented in Automata LinguistTM

Leverage defeasibility of the logic

- For rich logical K: handle exceptions and change
 - Incl. for NLP itself: "The thing about NL is that there's a gazillion special cases" [Peter Clark]

Query Justification in Rulelog (SILK)

- **G** True literal
- **G** False literal
- F Fact
- **R** True rule body (argument) supporting a literal
- P Prioritization rule between two rule tags
- Refutation: another argument on the other side had a higher priority
- Live argument
- There are more arguments to see (pro, con, both)