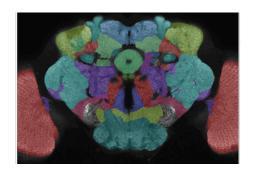
Dresden University of Technology Faculty of Computer Science


Existential Rules in Ontological Modelling

Markus Krötzsch Dresden University of Technology

Rules and Ontologies

- Ontologies
 - Structural models
 - Static
 - Output known at design time

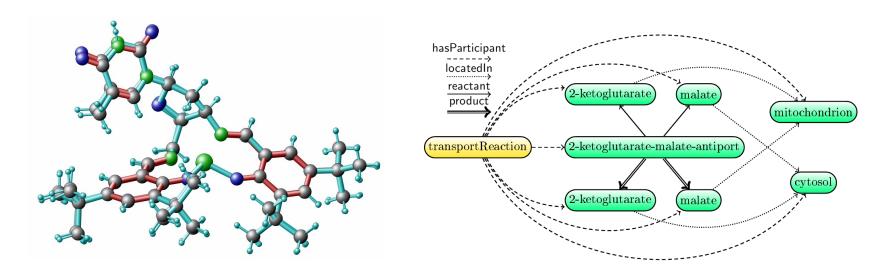
- Rules
 - Computational models
 - Dynamic
 - Problem solving at runtime

Rules in Computation

- Logic programming
 - PROLOG, Answer Set Programming
- Data access and query languages
 - Datalog
- Information integration and data exchange
 - Database Dependencies and Constraints
- Derivation
 - Deduction Rules, Production Rules

Two Unknowns

- Unknown Unknowns
 - Do we allow our specification to be incomplete?
 - Open World vs. Closed World
 - Entailment vs. Model Checking
- Known Unknowns
 - Do we allow "anonymous" elements?
 - Nulls (bnodes, existential quantifiers) vs. constants
 - No Unique Name Assumption on Nulls


Rules and the Unknown

- Closed World & Unique Names
 - PROLOG
 - Datalog
 - •
- Open World and Anonymous Individuals:
 - Tuple Generating Dependencies
 - •

Using Rules to Model Ontologies

- Expressive advantage:
 - Rules can express complex relational structures
 - Natural compatibility with conjunctive queries
 - Well-understood non-monotonic semantics

Existential Rules

Formulae of the form:

$$\forall \mathbf{x}$$
. B1 $\wedge \ldots \wedge \exists \mathbf{y}$.H1 $\wedge \ldots \wedge \exists \mathbf{k}$

where B1, ..., Bn, H1, ..., Hk are logical atoms (we often keep the \forall implicit)

- Also known as:
 - Tuple Generating Dependencies (TGDs)
 - Datalog+/-
 - ∀∃-rules

Reasoning with Existential Rules

- Considered as first-order logic formulae
 - Open World Semantics
 - Sometimes Unique Name Assumption on constants
- Main practical entailment problem:
 - Conjunctive query answering
- Entailment is hard:
 - Even fact entailment is undecidable in general

Existential Rules: Decidable Fragments

- Approach 1: Acyclicity
 - Limit amount of derived Nulls
 - Finite least models
- Approach 2: Guardedness
 - Limit non-local interactions in derivation
 - Tree-like least models
- Approach 3: Boundedness
 - Limit recursion to allow full expansion of rule sets
 - Rules can be rewritten to conjunctive queries

Nonmonotonic Existential Rules

Formulae of the form:

 $\forall x$. B1 $\land \ldots \land \exists y$. H1 $\land \ldots \land \exists x$. B1 $\land \ldots \land \exists x$.

where B1, ..., Bn, C1, ..., Cm, H1, ..., Hk are logical atoms (we often keep the \forall implicit)

- Possible Semantics of Negation:
 - Stable Model Semantics (as in ASP)
 - Well-Founded Semantics

Nonmonotonic Existential Rules: Example

[Magka, K, Horrocks: Computing Stable Models for Nonmonotonic Existential Rules. IJCAI'13]

• Modelling molecular structures with rules:

$$\begin{array}{c} \textbf{O}-\textbf{H}\\ \textbf{H}-\textbf{C}-\textbf{H}\\ \textbf{I}\\ \textbf{H} \end{array} \qquad \begin{array}{c} \text{methanol}(x) \rightarrow \exists_{i=1}^6 y_i. \bigwedge_{i=1}^6 hasAtom(x,y_i) \wedge c(y_1) \wedge o(y_2) \wedge \\ \bigwedge_{i=3}^6 h(y_i) \wedge \bigwedge_{i=2}^5 bond(y_1,y_i) \wedge bond(y_2,y_6) \end{array}$$

Nonmonotonic negation used to control structure:

Nonmonotonic Existential Rules: Experiments

[Magka, K, Horrocks: Computing Stable Models for Nonmonotonic Existential Rules. IJCAI'13]

- Data modelled in rules:
 - 500 molecule models (from ChEBI database)
 - 30 functional groups
 - 50 chemical classes
 - → 78,957 rules in total
- Query answering for classifying molecules:
 - DLV (Answer Set Solver): time out after 5min
 - Static analysis to partition rules + DLV: 13.5 sec
 - → 8,639 subsumptions of chemical classes

Conclusions

- Rules can be used for ontological modelling
- Existential quantifiers to derive new structures (Nulls)
- Closed world? Open World? Mix and match!
- TODOs:
 - No unified syntax or even file format (other than RIF)
 - No tool and libraries to process and represent rules
 - No tools to model with rules
 - No reasoners optimized for ontological needs

