Notes on the gist Unit of Measure Ontology
Overview

The gist unit of measure ontology (gistUOM.owl) was designed to cover most of the cases needed for business system interaction and still retain compliance with scientific or other uses.

We tried to employ the fewest concepts and still avoid ambiguity.

	Concepts
	Count

	Object Properties
	4

	Datatype Properties
	4

	Fundamental classes
	2

	Fundamental instances
	11

	Other classes
	27

Foundation

The ontology is based on the seven key SI units (the actual instances of the units):

· Second

· Meter

· Kilogram

· Kelvin

· Ampere

· Candela

· Mole

Even though most business users won’t use the last three, there might be some units that are derived from them such as watt.

I added two that are essential for business use:
· Each

· US_Dollar

As I’ll discuss under the section on compound units, I added two compound units:

· Square_meter

· Cubic_meter

The data type properties are:

· hasDecimalValue – the property that holds the actual value of whatever is measured
· hasCurrencyValue – I subtyped Decimal Value to Currency value to allow for the different rules on rounding in computation.

· convertToBase – the conversion factor to get from one unit of measure to its base

· hasConversionOffset – for temperature, we need an offset as well because it doesn’t have a true zero.
The two fundamental classes are:

· Magnitude – is an instance of a magnitude (something either measured or a reference that will be measured to) The magnitude has a unit of measure and a value.
· UnitOfMeasure – the concept that there are units of measure and each has a “base.”

And the object properties:

· BaseUnit – the property that ties a unit of measure to its base (i.e., inch would have the base unit “meter”)

· hasUoM – ties a Unit of measure to the Magnitude
· nominator – for ratios, discussed below

· denominator – for ratios, discussed below.

Derived Classes and Concepts

The rest of everything is derived from the above.

There is a class for each of the types of units of measure (DistanceUnit, DurationUnit etc.) which are defined by having the particular base (i.e., meter or second) as their base. This means that if I made up an “inch” unit of measure and said its base unit was “meter,” the system will infer that it is a member of the DistanceUnit class. These are all done with the “hasValue” construct.

In a similar fashion, there are classes of Magnitudes (i.e. some magnitudes are Durations, some Weights, etc.). These are derived from a someValue restriction based on the unit of measure used.

Compound Units

There are two types of “compound units of measure”: ratios and products.

Ratios are by far the more common. Speed is the ratio of distance over time. Acceleration is the ratio of speed over time. Our approach to ratios is to have a ratio class with a numerator and denominator. For example, if you wanted to create a speed unit, you might put Miles in as the numerator and Hours in the denominator. Miles and Hours would have to have been previously set up and each would need a conversion factor to the base (meters and seconds, in this case).
Products (that is, multiplication of units) isn’t used as much in general business. We opted to implement the two most common (area and volume) and leave it for extensions to provide the general case (force in newtons, for instance).
Conversions

We don’t have the conversion math in here, although it wouldn’t be too hard to add it with some SWRL built-ins. All you really need to do if you want to convert one measurement (let’s say 24 inches) to feet is:
1) You have a magnitude with a decimal value of 24.0 and a unit of measure of “inches.”

2) The inches unit has a baseUnit of “meter” and therefore gets classified as a DistanceUnit.
3) The inches unit has a conversion factor of 0.0254 so the system converts it to .6096 meters.
4) The target measure will be in feet.

5) Feet has a base of meters and a convertToBase of 0.3048.
6) Because we’re going from the base to the other unit we divide the .6096 by .3048 and get 2 (feet).
The general case to convert from Measurement In Unit 1 (MU1) to Measurement in Unit 2 (MU2) is MU1 * U1.convertToBase / U2.convertToBase.
Extensions
There are several ways to extend this, but I was trying to get the smallest core. Anyone shipping a measurement around is obligated to declare a unit of measure and how it converts to one of these bases.
In gist we extend this by having “Measure” which categorizes the magnitude as being an actual measurement or an estimate or a reference value.

We then extend that to “Measurement” which includes a date and time the measure was taken, by whom or what and what procedure or method was used. But not everyone would want to follow that pattern.

Other extensions would be to fill out all the known units and their conversions.

Also the currency unit would need to be extended with date ranges for currency conversion for any multi currency system.

